首页> 外文期刊>Advanced Functional Materials >Colloidal Occlusion Template Method for Micromanufacturing of Omniphobic Surfaces
【24h】

Colloidal Occlusion Template Method for Micromanufacturing of Omniphobic Surfaces

机译:胶体遮挡模板法用于难加工表面的微制造

获取原文
获取原文并翻译 | 示例
           

摘要

An efficient strategy to produce forests of aligned nanowires and nail-like micrometer-sized structures, whose density can be tuned in a broad range, is reported in this study. It relies on a combination of two template-assisted nanofabrication/patterning methods: electrochemical growth of metal nanowires in nanoporous sacrificial templates and partial masking of a surface with a self-assembled colloidal monolayer. A great potential of this novel approach, termed here colloidal occlusion template method, is demonstrated on the example of the fabrication of omniphobic surfaces comprised of nickel micronails whose density is varied to approach highest possible contact angles. After chemical modification to reduce their surface tension, these microstructures with reentrant geometry support the non-wetting Cassie state for both high-surface-tension water and low-surface-tension hexade-cane. In particular, superhydrophobic behavior (contact angles exceeding 150°) is found for water, while oleophobicity (contact angles approaching 110°) is observed for hexadecane. The proposed approach can be exploited for the fabrication of a large variety of supported high-aspect-ratio nano/ microstructures in applications where a surface density of features has to be several orders of magnitude lower than can be obtained with conventional template methods.
机译:这项研究报告了一种有效的策略来生产排列成线的纳米线和钉状微米级结构的森林,其密度可以在很大范围内调整。它依赖于两种模板辅助的纳米加工/图案化方法的组合:纳米多孔牺牲模板中金属纳米线的电化学生长以及具有自组装胶体单层的表面的部分遮盖。这种新型方法的巨大潜力,在这里被称为胶体阻塞模板法,是在制造由镍微钉组成的全憎表面的例子中展示出来的,该镍微钉的密度变化以接近最大可能的接触角。经过化学修饰以降低其表面张力后,这些具有凹角几何形状的微结构支持高表面张力水和低表面张力六甘蔗的非润湿卡西状态。特别地,对于水发现超疏水行为(接触角超过150°),而对于十六烷则观察到疏油性(接近110°的接触角)。所提出的方法可用于在特征的表面密度必须比传统模板方法获得的特征表面密度低几个数量级的应用中制造多种支持的高纵横比纳米/微结构。

著录项

  • 来源
    《Advanced Functional Materials》 |2013年第7期|870-877|共8页
  • 作者单位

    Department of Chemistry and Biomolecular Science Clarkson University 8 Clarkson Avenue, Potsdam, NY 13699, USA;

    Department of Chemistry and Biomolecular Science Clarkson University 8 Clarkson Avenue, Potsdam, NY 13699, USA;

    Department of Chemistry and Biomolecular Science Clarkson University 8 Clarkson Avenue, Potsdam, NY 13699, USA;

    School of Materials Science and Engineering and Center for Optical Materials Science and Engineering Technologies Clemson University 161 Sirrine Hall, Clemson, SC 29634, USA;

    Department of Chemistry and Biomolecular Science Clarkson University 8 Clarkson Avenue, Potsdam, NY 13699, USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号