首页> 外文期刊>Advanced Functional Materials >The Criteria for Beneficial Disorder in Thermoelectric Solid Solutions
【24h】

The Criteria for Beneficial Disorder in Thermoelectric Solid Solutions

机译:热电固溶体的良性破坏准则

获取原文
获取原文并翻译 | 示例
           

摘要

Forming solid solutions has long been considered an effective approach for good thermoelectrics because the lattice thermal conductivities are lower than those of the constituent compounds due to phonon scattering from disordered atoms. However, this effect could also be compensated by a reduction in carrier mobility due to electron scattering from the same disorder. Using a detailed study of n-type (PbTe)_(1-x) (PbSe)_x solid solution (0 ≤ x ≤ 1) as a function of composition, temperature, and doping level, quantitative modeling of transport properties reveals the important parameters characterizing these effects. Based on this analysis, a general criterion for the improvement of zT due to atomic disorder in solid solutions is derived and can be applied to several thermoelectric solid solutions, allowing a convenient prediction of whether better thermoelectric performance could be achieved in a given solid solution. Alloying is shown to be most effective at low temperatures and in materials that are unfavorable for thermoelectrics in their unalloyed forms: high lattice thermal conductivity (stiff materials with low Gruneisen parameters) and high deformation potential.
机译:长期以来,形成固溶体一直被认为是良好热电学的一种有效方法,因为由于声子从无序原子散射而使晶格热导率低于组成化合物的热导率。然而,由于来自同一病症的电子散射,载流子迁移率的降低也可以补偿这种影响。通过对n型(PbTe)_(1-x)(PbSe)_x固溶体(0≤x≤1)作为成分,温度和掺杂水平的函数的详细研究,传输性质的定量模型揭示了重要的表征这些效果的参数。基于此分析,得出了由于固溶体中的原子无序而导致的zT改善的一般标准,该标准可应用于几种热电固溶体,从而可以方便地预测在给定的固溶体中能否实现更好的热电性能。合金化在低温和非合金形式的热电材料中被证明是最有效的:高晶格导热率(具有低Gruneisen参数的硬质材料)和高变形势。

著录项

  • 来源
    《Advanced Functional Materials》 |2013年第12期|1586-1596|共11页
  • 作者单位

    Materials Science, California Institute of Technology Pasadena, CA 91125, USA;

    Materials Science, California Institute of Technology Pasadena, CA 91125, USA;

    Materials Science, California Institute of Technology Pasadena, CA 91125, USA;

    Materials Science, California Institute of Technology Pasadena, CA 91125, USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号