首页> 外文期刊>Advanced Functional Materials >Kinetic Isotope Effect in the Hydrogenation and Deuteration of Graphene
【24h】

Kinetic Isotope Effect in the Hydrogenation and Deuteration of Graphene

机译:石墨烯加氢和氘代反应中的动力学同位素效应

获取原文
获取原文并翻译 | 示例
           

摘要

Time-dependent photoemission spectroscopy is employed to study the kinetics of the hydro-genation/deuteration reaction of graphene. Resulting in an unusual kinetic isotope effect, the graphene deuteration reaction proceeds faster than hydrogenation and leads to substantially higher maximum coverages of deuterium (D/C≈35% vs H/C≈25%). These results can be explained by the fact that in the atomic state H and D have a lower energy barrier to overcome in order to react with graphene, while in the molecular form the bond between two atoms must be broken before the capture on the graphene layer. More importantly, D has a higher desorption barrier than H due to quantum mechanical zero-point energy effects related to the C-D or C-H stretch vibration. Molecular dynamics simulations based on a quantum mechanical electronic potential can reproduce the experimental trends and reveal the contribution of the constituent chemisorption, reflection, and associative desorption processes of H or D atoms onto graphene. Regarding the electronic structure changes, a tunable electron energy gap can be induced by both deuteration and hydrogenation.
机译:随时间变化的光发射光谱用于研究石墨烯加氢/氘代反应的动力学。导致异常的动力学同位素效应,石墨烯氘代反应进行得比氢化快,并且导致氘的最大覆盖率大大提高(D /C≈35%vs H /C≈25%)。这些结果可以通过以下事实解释:在原子态下,H和D具有较低的能垒以便与石墨烯反应而被克服,而在分子形式下,两个原子之间的键必须被打破才能被捕获在石墨烯层上。更重要的是,由于与C-D或C-H拉伸振动有关的量子机械零点能量效应,D具有比H高的脱附势垒。基于量子机械电子势的分子动力学模拟可以重现实验趋势,并揭示H或D原子在石墨烯上的化学吸附,反射和缔合解吸过程的贡献。关于电子结构的变化,氘和氢化均可引起可调节的电子能隙。

著录项

  • 来源
    《Advanced Functional Materials》 |2013年第13期|1628-1635|共8页
  • 作者单位

    Interdisciplinary Laboratory for Computational Science (LISC) FBK-CMM, via Sommarive 18, 1-38123 Trento, Italy;

    Department of Materials Science Moscow State University Leninskiye Gory, 1/3, 119992 Moscow, Russia Faculty of Physics, University of Vienna Boltzmanngasse 5, A-l 090 Vienna, Austria;

    Institut fur Funktionelle Grenzflachen (IFG) Karlsruher Institut fur Technologie (KIT) Hermann-von-Helmholtz- Platz 1 D-76344 Eggenstein-Leopoldshafen, Germany;

    Department of Chemistry Graduate School of Science Nagoya University Nagoya 464-8602, Japan;

    IFW Dresden, P.O. Box 270116, D-01171 Dresden, Germany St. Petersburg State University St. Petersburg 198504, Russia;

    IFW Dresden, P.O. Box 270116, D-01171 Dresden, Germany;

    Helmholtz-Zentrum Berlin fur Materialien und Energie Elektronenspeicherring BESSY II Albert-Einstein-Strasse 15, D-12489 Berlin, Germany;

    Elettra Sincrotrone Trieste Strada Statale 14 Km 163.5, 34149 Trieste, Italy;

    St. Petersburg State University St. Petersburg 198504, Russia;

    St. Petersburg State University St. Petersburg 198504, Russia Institut fur Festkoerperphysik TU Dresden Mommsenstrasse 13, D-01069 Dresden, Germany;

    Max-Planck-lnstitut fur Polymerforschung Ackermannweg 10, D-55128 Mainz, Germany;

    Institut fur Funktionelle Grenzflachen (IFG) Karlsruher Institut fur Technologie (KIT) Hermann-von-Helmholtz- Platz 1 D-76344 Eggenstein-Leopoldshafen, Germany;

    IFW Dresden, P.O. Box 270116, D-01171 Dresden, Germany;

    IFW Dresden, P.O. Box 270116, D-01171 Dresden, Germany;

    Interdisciplinary Laboratory for Computational Science (LISC) FBK-CMM, via Sommarive 18, 1-38123 Trento, Italy;

    Department of Chemistry Moscow State University Leninskiye Gory, 1/3, 119992 Moscow, Russia;

    Department of Chemistry Graduate School of Science Nagoya University Nagoya 464-8602, Japan;

    IFW Dresden, P.O. Box 270116, D-011 71 Dresden, Germany Faculty of Physics, University of Vienna Boltzmanngasse 5, A-1090 Vienna, Austria;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号