首页> 外文期刊>Advanced Functional Materials >Reconstruction of Conformal Nanoscale MnO on Graphene as a High-Capacity and Long-Life Anode Material for Lithium Ion Batteries
【24h】

Reconstruction of Conformal Nanoscale MnO on Graphene as a High-Capacity and Long-Life Anode Material for Lithium Ion Batteries

机译:石墨烯上共形纳米级MnO的重构,作为锂离子电池的高容量和长寿命阳极材料

获取原文
获取原文并翻译 | 示例
           

摘要

To tackle the issue of inferior cycle stability and rate capability for MnO anode materials in lithium ion batteries, a facile strategy is explored to prepare a hybrid material consisting of MnO nanocrystals grown on conductive graphene nanosheets. The prepared MnO/graphene hybrid anode exhibits a reversible capacity as high as 2014.1 mAh g~(-1) after 150 discharge/charge cycles at 200 mA g~(-1) excellent rate capability (625.8 mAh g~(-1) at 3000 mA g~(-1)), and superior cyclability (843.3 mAh g~(-1) even after 400 discharge/ charge cycles at 2000 mA g~(-1) with only 0.01% capacity loss per cycle). The results suggest that the reconstruction of the MnO/graphene electrodes is intrinsic due to conversion reactions. A long-term stable nanoarchitecture of graphene-supported ultrafine manganese oxide nanoparticles is formed upon cycling, which yields a long-life anode material for lithium ion batteries. The lithiation and delithiation behavior suggests that the further oxidation of Mn(n) to Mn(iv) and the interfacial lithium storage upon cycling contribute to the enhanced specific capacity. The excellent rate capability benefits from the presence of conductive graphene and a short transportation length for both lithium ions and electrons. Moreover, the as-formed hybrid nanostructure of MnO on graphene may help achieve faster kinetics of conversion reactions.
机译:为了解决锂离子电池中MnO负极材料的循环稳定性和倍率性能差的问题,探索了一种简便的策略来制备由生长在导电石墨烯纳米片上的MnO纳米晶体组成的杂化材料。制备的MnO /石墨烯杂化阳极在200 mA g〜(-1)下经过150次放电/充电循环后具有高达2014.1 mAh g〜(-1)的可逆容量,极好的速率能力(625.8 mAh g〜(-1)在200mA下) 3000 mA g〜(-1))和出色的可循环性(即使在2000 mA g〜(-1)进行400次放电/充电循环后,仍具有843.3 mAh g〜(-1)的容量,每个周期只有0.01%的容量损失)。结果表明,由于转化反应,MnO /石墨烯电极的重建是固有的。循环时形成了石墨烯负载的超细氧化锰纳米颗粒的长期稳定的纳米结构,从而产生了长寿命的锂离子电池负极材料。锂化和脱锂行为表明,Mn(n)进一步氧化为Mn(iv)以及循环时界面锂的储存有助于提高比容量。优异的倍率性能得益于导电石墨烯的存在以及锂离子和电子的短运输长度。此外,在石墨烯上形成的MnO杂化纳米结构可能有助于实现更快的转化反应动力学。

著录项

  • 来源
    《Advanced Functional Materials》 |2013年第19期|2436-2444|共9页
  • 作者单位

    State Key Laboratory of Material Processing and Die &, Mould Technology College of Materials Science and Engineering Huazhong University of Science and Technology Wuhan 430074, P. R. China;

    State Key Laboratory of Material Processing and Die &, Mould Technology College of Materials Science and Engineering Huazhong University of Science and Technology Wuhan 430074, P. R. China;

    State Key Laboratory of Material Processing and Die &, Mould Technology College of Materials Science and Engineering Huazhong University of Science and Technology Wuhan 430074, P. R. China;

    State Key Laboratory of Material Processing and Die &, Mould Technology College of Materials Science and Engineering Huazhong University of Science and Technology Wuhan 430074, P. R. China;

    State Key Laboratory of Material Processing and Die &, Mould Technology College of Materials Science and Engineering Huazhong University of Science and Technology Wuhan 430074, P. R. China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号