首页> 外文期刊>Advanced Functional Materials >Nongeminate Recombination and Charge Transport Limitations in Diketopyrrolopyrrole-Based Solution-Processed Small Molecule Solar Cells
【24h】

Nongeminate Recombination and Charge Transport Limitations in Diketopyrrolopyrrole-Based Solution-Processed Small Molecule Solar Cells

机译:基于二酮吡咯并吡咯的溶液处理的小分子太阳能电池的非成对重组和电荷传输限制

获取原文
获取原文并翻译 | 示例
           

摘要

Charge transport and nongeminate recombination are investigated in two solution-processed small molecule bulk heterojunction solar cells consisting of diketopyrrolopyrrole (DPP)-based donor molecules, mono-DPP and bis-DPP, blended with [6,6]-phenyl-C71-butyric acid methyl ester (PCBM). While the bis-DPP system exhibits a high fill factor (62%) the mono-DPP system suffers from pronounced voltage dependent losses, which limit both the fill factor (46%) and short circuit current. A method to determine the average charge carrier density, recombination current, and effective carrier lifetime in operating solar cells as a function of applied bias is demonstrated. These results and light intensity measurements of the current-voltage characteristics indicate that the mono-DPP system is severely limited by nongeminate recombination losses. Further analysis reveals that the most significant factor leading to the difference in fill factor is the comparatively poor hole transport properties in the mono-DPP system (2 × 10~(-5) cm~2 V~(-1) s~(-1) versus 34 × 10~(-5) cm~2 V~(-1) s~(-1)). These results suggest that future design of donor molecules for organic photovoltaics should aim to increase charge carrier mobility thereby enabling faster sweep out of charge carriers before they are lost to nongeminate recombination.
机译:在两个溶液处理的小分子本体异质结太阳能电池中研究了电荷传输和非gege重组,这两个太阳能电池由基于二酮吡咯并吡咯(DPP)的供体分子mono-DPP和bis-DPP与[6,6]-苯基-C71-丁酸混合而成酸甲酯(PCBM)。尽管bis-DPP系统显示出较高的填充系数(62%),但mono-DPP系统却遭受明显的电压相关损耗,这限制了填充系数(46%)和短路电流。演示了一种确定平均电荷载流子密度,复合电流和工作太阳能电池中有效载流子寿命作为施加偏压的函数的方法。这些结果和电流-电压特性的光强度测量结果表明,单-DPP系统受到非叠层重组损失的严重限制。进一步的分析表明,导致填充因子差异的最重要因素是在单DPP系统中(2×10〜(-5)cm〜2 V〜(-1)s〜(- 1)与34×10〜(-5)cm〜2 V〜(-1)s〜(-1))。这些结果表明,用于有机光伏的供体分子的未来设计应旨在提高电荷载流子迁移率,从而能够在电荷流失成非重组时更快地清除掉电荷载流子。

著录项

  • 来源
    《Advanced Functional Materials》 |2013年第28期|3584-3594|共11页
  • 作者单位

    Center for Polymers and Organic Solids University of California Santa Barbara, CA 93106, USA,Department of Materials University of California Santa Barbara, CA 93106, USA;

    Center for Polymers and Organic Solids University of California Santa Barbara, CA 93106, USA,Department of Chemistry and Biochemistry University of California Santa Barbara, CA 93106, USA;

    University of Potsdam Institute of Physics and Astronomy 14476 Potsdam, Germany;

    Center for Polymers and Organic Solids University of California Santa Barbara, CA 93106, USA,Department of Chemistry and Biochemistry University of California Santa Barbara, CA 93106, USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号