首页> 外文期刊>Advanced Functional Materials >Charge-Tunable Autoclaved Silk-Tropoelastin Protein Alloys That Control Neuron Cell Responses
【24h】

Charge-Tunable Autoclaved Silk-Tropoelastin Protein Alloys That Control Neuron Cell Responses

机译:可调节电荷的高压灭菌丝-弹性蛋白蛋白合金,可控制神经元细胞反应。

获取原文
获取原文并翻译 | 示例
           

摘要

Tunable protein composites are important for constructing extracellular matrix mimics of human nerve tissues with control of charge, structural, and mechanical properties. Molecular interaction mechanisms between silk fibroin protein and recombinant human tropoelastin, based on charge, are utilized to generate a new group of multifunctional protein alloys with different net charges. These new biomaterials are then utilized as a bioma-terial platform to control neuron cell response. With a +38 net charge in water, tropoelastin molecules provide extraordinary elasticity and selective interactions with cell surface integrins. In contrast, negatively charged silk fibroin protein (net charge -36) provides remarkable toughness and stiffness with morphologic stability in material formats via autoclaving-induced beta-sheet crystal physical crosslinks. The combination of these properties in alloy format extends the versatility of both structural proteins, providing a new biocompatible, biodegradable, and charge-tunable biomaterial platform for neural repair. The data point to these protein alloys as an alternative to commonly used charged synthetic polymers, particularly with regard to the versatility of material formats (e.g., gels, sponges, films, fibers). The results also provide a practical example of physically designed protein materials with control of net charge to direct biological outcomes, in this case for neuronal tissue engineering.
机译:可调节的蛋白质复合物对于构建具有电荷,结构和机械性质控制的人神经组织的细胞外基质模拟物非常重要。丝素蛋白与重组人原弹性蛋白之间基于电荷的分子相互作用机制被用来产生一组新的具有不同净电荷的多功能蛋白合金。这些新的生物材料随后被用作控制神经元细胞反应的生物材料平台。水中的原弹性蛋白分子在水中的净电荷为+38,可提供非凡的弹性以及与细胞表面整联蛋白的选择性相互作用。相反,带负电的丝素蛋白蛋白(净电荷-36)通过高压灭菌诱导的β-折叠晶体物理交联,在材料形式中提供了显着的韧性和刚度以及形态稳定性。合金形式的这些特性的组合扩展了两种结构蛋白的多功能性,为神经修复提供了新的生物相容性,可生物降解性和电荷可调性的生物材料平台。数据表明这些蛋白质合金可以替代常用的带电合成聚合物,尤其是在材料形式(例如凝胶,海绵,薄膜,纤维)的多功能性方面。结果还提供了物理设计的蛋白质材料的实际例子,该蛋白质材料具有控制净电荷以指导生物学结果的能力,在这种情况下是神经元组织工程。

著录项

  • 来源
    《Advanced Functional Materials》 |2013年第31期|3875-3884|共10页
  • 作者单位

    Department of Biomedical Engineering Tufts University Medford, MA 02155, USA;

    Department of Biomedical Engineering Tufts University Medford, MA 02155, USA;

    Department of Biomedical Engineering Tufts University Medford, MA 02155, USA;

    Department of Biomedical Engineering Tufts University Medford, MA 02155, USA;

    School of Molecular Bioscience The University of Sydney Sydney, NSW 2006, Australia;

    Department of Biomedical Engineering Tufts University Medford, MA 02155, USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号