首页> 外文期刊>Advanced Functional Materials >Engineering of Facets, Band Structure, and Gas-Sensing Properties of Hierarchical Sn~(2+)-Doped SnO_2 Nanostructures
【24h】

Engineering of Facets, Band Structure, and Gas-Sensing Properties of Hierarchical Sn~(2+)-Doped SnO_2 Nanostructures

机译:Sn〜(2+)掺杂SnO_2纳米结构的刻面设计,能带结构和气敏特性

获取原文
获取原文并翻译 | 示例
           

摘要

Hierarchical SnO_2 nanoflowers, assembled from single-crystalline SnO_2 nanosheets with high-index (113) and (102) facets exposed, are prepared via a hydrothermal method using sodium fluoride as the morphology controlling agent. Formation of the 3D hierarchical architecture comprising of SnO_2 nanosheets takes place via Ostwald ripening mechanism, with the growth orientation regulated by the adsorbate fluorine species. The use of Sn(Ⅱ) precursor results in simultaneous Sn~(2+) self-doping of SnO_2 nanoflowers with tunable oxygen vacancy bandgap states. The latter further results in the shifting of semiconductor Fermi levels and extended absorption in the visible spectral range. With increased density of states of Sn~(2+) -doped SnO_2 selective facets, this gives rise to enhanced interfacial charge transfer, that is, high sensing response, and selectivity towards oxidizing NO_2 gas. The better gas sensing performance over (102) compared to (113) faceted SnO_2 nanostructures is elucidated by surface energetic calculations and Bader analyses. This work highlights the possibility of simultaneous engineering of surface energetics and electronic properties of SnO_2 based materials.
机译:通过使用氟化钠作为形态控制剂的水热法,由暴露有高折射率(113)和(102)小面的单晶SnO_2纳米片组装而成的分层SnO_2纳米花。包含SnO_2纳米片的3D层次结构的形成是通过奥斯特瓦尔德(Ostwald)成熟机制进行的,其生长方向受被吸附的氟物质控制。 Sn(Ⅱ)前体的使用导致具有可调的氧空位带隙态的SnO_2纳米花同时发生Sn〜(2+)自掺杂。后者进一步导致半导体费米能级的移动和可见光谱范围内吸收的扩展。随着掺杂有Sn〜(2+)的SnO_2选择性小面的状态密度的增加,这将导致界面电荷转移增强,即高感测响应以及对氧化NO_2气体的选择性。表面能计算和Bader分析表明,与(113)多面SnO_2纳米结构相比,(102)具有更好的气体传感性能。这项工作强调了同时设计表面能和SnO_2基材料的电子性能的可能性。

著录项

  • 来源
    《Advanced Functional Materials》 |2013年第38期|4847-4853|共7页
  • 作者单位

    Department of Physics and Materials Science & Centre for Functional Photonics (CFP) City University of Hong Kong, Hong Kong SAR;

    Department of Physics and Materials Science & Centre for Functional Photonics (CFP) City University of Hong Kong, Hong Kong SAR;

    Clean Energy and Nanotechnology (CLEAN) Laboratory School of Energy and Environment City University of Hong Kong, Hong Kong SAR;

    Department of Physics and Materials Science & Centre for Functional Photonics (CFP) City University of Hong Kong, Hong Kong SAR;

    Department of Physics and Materials Science & Centre for Functional Photonics (CFP) City University of Hong Kong, Hong Kong SAR;

    Department of Chemistry College of Science Shanghai University Shanghai 200444, P. R. China;

    Department of Chemistry College of Science Shanghai University Shanghai 200444, P. R. China;

    Department of Physics and Materials Science & Centre for Functional Photonics (CFP) City University of Hong Kong, Hong Kong SAR;

    Department of Physics and Materials Science & Centre for Functional Photonics (CFP) City University of Hong Kong, Hong Kong SAR;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号