首页> 外文期刊>Advanced Functional Materials >H-Doped Black Titania with Very High Solar Absorption and Excellent Photocatalysis Enhanced by Localized Surface Plasmon Resonance
【24h】

H-Doped Black Titania with Very High Solar Absorption and Excellent Photocatalysis Enhanced by Localized Surface Plasmon Resonance

机译:H掺杂的黑色二氧化钛具有很高的太阳吸收能力和出色的光催化作用,并通过局部表面等离子体共振增强

获取原文
获取原文并翻译 | 示例
           

摘要

Black TiO_2 attracts enormous attention due to its large solar absorption and induced excellent photocatalytic activity. Herein, a new approach assisted by hydrogen plasma to synthesize unique H-doped black titania with a core/shell structure (TiO_2@TiO_(2-x)H_x) is presented, superior to the high H_2-pressure process (under 20 bar for five days). The black titania possesses the largest solar absorption (≈83%), far more than any other reported black titania (the record (high-pressure): ≈30%). H doping is favorable to eliminate the recombination centers of light-induced electrons and holes. High absorption and low recombination ensure the excellent photocatalytic activity for the black titania in the photo-oxidation of organic molecules in water and the production of hydrogen. The H-doped amorphous shell is proposed to play the same role as Ag or Pt loading on TiO_2 nanocrystals, which induces the localized surface plasma resonance and black coloration. Photocatalytic water splitting and cleaning using TiO_(2-x)H_x is believed to have a bright future for sustainable energy sources and cleaning environment.
机译:黑色TiO_2吸收大量太阳光并具有出色的光催化活性,因此备受关注。在这里,提出了一种新方法,该方法借助氢等离子体合成具有核/壳结构(TiO_2 @ TiO_(2-x)H_x)的独特的H掺杂黑二氧化钛,优于高H_2压力工艺(低于20 bar五天)。黑二氧化钛具有最大的太阳吸收(≈83%),远远超过任何其他已报道的黑二氧化钛(记录(高压):≈30%)。 H掺杂有利于消除光致电子和空穴的复合中心。高吸收率和低重组率确保了黑色二氧化钛在水中有机分子的光氧化和氢产生方面的优异光催化活性。提出氢掺杂非晶壳起着与Ag或Pt负载在TiO_2纳米晶体上相同的作用,这引起局部表面等离子体共振和黑色。人们认为使用TiO_(2-x)H_x进行光催化水分解和清洁对于可持续能源和清洁环境具有广阔的前景。

著录项

  • 来源
    《Advanced Functional Materials》 |2013年第43期|5444-5450|共7页
  • 作者单位

    CAS Key Laboratory of Materials for Energy Conversion Shanghai Institute of Ceramics Chinese Academy of Sciences Shanghai, 200050, China;

    CAS Key Laboratory of Materials for Energy Conversion Shanghai Institute of Ceramics Chinese Academy of Sciences Shanghai, 200050, China;

    CAS Key Laboratory of Materials for Energy Conversion Shanghai Institute of Ceramics Chinese Academy of Sciences Shanghai, 200050, China;

    CAS Key Laboratory of Materials for Energy Conversion Shanghai Institute of Ceramics Chinese Academy of Sciences Shanghai, 200050, China;

    CAS Key Laboratory of Materials for Energy Conversion Shanghai Institute of Ceramics Chinese Academy of Sciences Shanghai, 200050, China;

    CAS Key Laboratory of Materials for Energy Conversion Shanghai Institute of Ceramics Chinese Academy of Sciences Shanghai, 200050, China;

    CAS Key Laboratory of Materials for Energy Conversion Shanghai Institute of Ceramics Chinese Academy of Sciences Shanghai, 200050, China;

    CAS Key Laboratory of Materials for Energy Conversion Shanghai Institute of Ceramics Chinese Academy of Sciences Shanghai, 200050, China,Beijing National Laboratory for Molecular Sciences and State Key Laboratory of Rare Earth Materials Chemistry and Applications College of Chemistry and Molecular Engineering Peking University Beijing 100871, China;

    Beijing National Laboratory for Molecular Sciences and State Key Laboratory of Rare Earth Materials Chemistry and Applications College of Chemistry and Molecular Engineering Peking University Beijing 100871, China;

    State Key Laboratory of Functional Materials for Informatics Shanghai Institute of Microsystem and Information Technology Chinese Academy of Sciences, Shanghai 200050, China;

    State Key Laboratory of Functional Materials for Informatics Shanghai Institute of Microsystem and Information Technology Chinese Academy of Sciences, Shanghai 200050, China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号