首页> 外文期刊>Advanced Functional Materials >Organic Dye Design Tools for Efficient Photocurrent Generation in Dye-Sensitized Solar Cells: Exciton Binding Energy and Electron Acceptors
【24h】

Organic Dye Design Tools for Efficient Photocurrent Generation in Dye-Sensitized Solar Cells: Exciton Binding Energy and Electron Acceptors

机译:在染料敏化太阳能电池中高效产生光电流的有机染料设计工具:激子结合能和电子受体

获取原文
获取原文并翻译 | 示例
           

摘要

The relationship between the exciton binding energies of several pure organic dyes and their chemical structures is explored using density functional theory calculations in order to optimize the molecular design in terms of the light-to-electric energy-conversion efficiency in dye-sensitized solar cell devices. Comparing calculations with measurements reveals that the exciton binding energy and quantum yield are inversely correlated, implying that dyes with lower exciton binding energy produce electric current from the absorbed photons more efficiently. When a strong electron-accepting moiety is inserted in the middle of the dye framework, the light-to-electric energy-conversion behavior significantly deteriorates. As verified by electronic-structure calculations, this is likely due to electron localization near the electron-deficient group. The combined computational and experimental design approach provides insight into the functioning of organic photosensitizing dyes for solar-cell applications. This is exemplified by the development of a novel, all-organic dye (EB-01) exhibiting a power conversion efficiency of over 9%.
机译:利用密度泛函理论计算探索了几种纯有机染料的激子结合能与其化学结构之间的关系,以便根据染料敏化太阳能电池器件的光能转换效率优化分子设计。 。计算结果与测量结果的比较表明,激子结合能与量子产率成反比,这表明具有较低激子结合能的染料可以更有效地从吸收的光子中产生电流。当强电子接受基团插入到染料骨架的中间时,光至电能的转换行为会明显恶化。正如电子结构计算所证实的,这很可能是由于电子在缺电子基团附近的局部化。结合了计算和实验设计方法,可以深入了解有机光敏染料在太阳能电池应用中的功能。开发新型的全有机染料(EB-01)表现出超过9%的功率转换效率就是例证。

著录项

  • 来源
    《Advanced Functional Materials》 |2012年第8期|p.1606-1612|共7页
  • 作者单位

    Macromolecular Science and Engineering University of Michigan Ann Arbor, Ml 48109, USA;

    Department of Material Science and Engineering University of Michigan Ann Arbor, Ml 48109, USA;

    Department of Material Science and Engineering University of Michigan Ann Arbor, Ml 48109, USA;

    Department of Material Science and Engineering University of Michigan Ann Arbor, Ml 48109, USA;

    Macromolecular Science and Engineering University of Michigan Ann Arbor, Ml 48109, USA Department of Material Science and Engineering University of Michigan Ann Arbor, Ml 48109, USA Chemical Engineering University of Michigan Ann Arbor, Ml 48109, USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号