首页> 外文期刊>Advanced Functional Materials >In Situ Studies of Ion Transport in Microporous Supercapacitor Electrodes at Ultralow Temperatures
【24h】

In Situ Studies of Ion Transport in Microporous Supercapacitor Electrodes at Ultralow Temperatures

机译:超低温度下微孔超级电容器电极中离子迁移的原位研究

获取原文
获取原文并翻译 | 示例
           

摘要

The ability to quickly store and deliver a significant amount of electrical energy at ultralow temperatures is critical for the energy-efficient operation of high altitude aircraft and spacecraft, exploration of natural resources in polar regions and extreme altitudes, and astronomical observatories exposed to ultralow temperatures. Commercial high-power electrochemical capacitors fail to operate at temperatures below -40 ℃. According to conventional wisdom, mesoporous electrochemical capacitor electrodes with pores large enough to accommodate fully solvated ions are needed for sufficiently rapid ion transport at lower temperatures. It is demonstrated that strictly microporous carbon electrodes with much higher volumetric capacitance can be efficiently used at temperatures as low as -70 ℃. The critical parameters, with respect to electrolyte properties and electrode porosity and microstructure, needed for achieving both rapid ion transport and efficient ion electroadsorption in porous carbons are discussed. As an example, the fabrication of an electrochemical capacitor with an outstanding performance at temperatures as low as -60 and -70 ℃ is demonstrated. At such low temperatures the capacitance of the synthesized electrodes is up to 123 F g~(-1) (≈76 F cm~(-3)), which is 50-100% higher than that of the most common commercial electrochemical capacitor electrode at room temperature. At -60 ℃ selected cells based on 0.2 mm electrodes exhibited characteristic charge discharge time constants of less than 9 s, which is faster than the majority of commercial devices at room temperature. The achieved combination of high energy and power densities at such ultralow temperatures is unprecedented and extremely promising for the advancement of energy storage systems.
机译:在超低温下快速存储和输送大量电能的能力对于高空飞行器和航天器的节能运行,极地和极端海拔地区的自然资源勘探以及暴露于超低温的天文台至关重要。商业大功率电化学电容器无法在低于-40℃的温度下工作。根据常规观点,需要具有足够大的孔以容纳完全溶剂化的离子的中孔电化学电容器电极,以在较低的温度下足够快速的离子传输。结果表明,在低至-70℃的温度下,可以有效地使用具有高得多的体积电容的严格微孔碳电极。讨论了在多孔碳中实现快速离子传输和有效离子电吸附所需的有关电解质性能,电极孔隙率和微观结构的关键参数。例如,演示了在低至-60和-70℃的温度下具有出色性能的电化学电容器的制造。在如此低的温度下,合成电极的电容高达123 F g〜(-1)(≈76F cm〜(-3)),比最常见的商用电化学电容器电极高50-100%在室温下。在-60℃下,选定的基于0.2 mm电极的电池的特征性电荷放电时间常数小于9 s,这比大多数商用设备在室温下快。在如此超低的温度下实现高能量和功率密度的组合是空前的,对于储能系统的发展极为有前途。

著录项

  • 来源
    《Advanced Functional Materials》 |2012年第8期|p.1655-1662|共8页
  • 作者单位

    School of Materials Science and Engineering Georgia Institute of Technology Atlanta, GA 30332-0245, USA;

    School of Materials Science and Engineering Georgia Institute of Technology Atlanta, GA 30332-0245, USA;

    Jet Propulsion Laboratory California Institute of Technology Pasadena, CA 91109, USA;

    Jet Propulsion Laboratory California Institute of Technology Pasadena, CA 91109, USA;

    Jet Propulsion Laboratory California Institute of Technology Pasadena, CA 91109, USA;

    Materials Science Center and Materials Science Department University of Wisconsin-Madison Madison, Wl 53706, USA;

    Micromeritics Instrument Corp Norcross, GA 30093, USA;

    School of Materials Science and Engineering Georgia Institute of Technology Atlanta, GA 30332-0245, USA,Streamline Nanotechnologies Inc., Atlanta, GA 30332-0100, USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号