首页> 外文期刊>Advanced Functional Materials >The Roles of the Ge-Te Core Network and the Sb-Te Pseudo Network During Rapid Nucleation-Dominated Crystallization of Amorphous Ge_2Sb_2Te_5
【24h】

The Roles of the Ge-Te Core Network and the Sb-Te Pseudo Network During Rapid Nucleation-Dominated Crystallization of Amorphous Ge_2Sb_2Te_5

机译:Ge-Te核心网络和Sb-Te伪网络在非晶Ge_2Sb_2Te_5的快速成核主导结晶中的作用

获取原文
获取原文并翻译 | 示例
           

摘要

Ge_2Sb_2Te_5 (GST) has demonstrated its outstanding importance among rapid phase-change (PC) materials, being applied for optical and electrical data storage for over three decades. The mechanism of nanosecond phase change in GST, which is vital for its application, has long been disputed: various, quite diverse scenarios have been proposed on the basis of various experimental and theoretical approaches. Nevertheless, one central question still remains unanswered: why is amorphous GST stable at room temperature for long time while it can rapidly transform to the crystalline phase at high temperature? Here it is revealed for the first time, by modelling the amorphous structure based on synchrotron radiation anomalous X-ray scattering data, that germanium and tellurium atoms form a "core" Ge-Te network with ring formation. It is also suggested that the Ge-Te network can stabilize the amorphous phase at room temperature and can persist in the crystalline phase. On the other hand, antimony does not contribute to ring formation but constitutes a "pseudo" network with tellurium, in which the characteristic Sb-Te distance is somewhat longer than the covalent Sb-Te bond distance. This suggests that the Sb-Te pseudo network may act as a precursor to forming critical nuclei during the crystallization process. The findings conctude that the Ge-Te core network is responsible for the outstanding stability and rapid phase change of the amorphous phase while the Sb-Te pseudo network is responsible for triggering critical nudeation.
机译:Ge_2Sb_2Te_5(GST)在快速相变(PC)材料中已显示出其卓越的重要性,该材料在光和电数据存储中已应用了三十多年。 GST的纳秒相变机制对其应用至关重要,长期以来一直存在争议:在各种实验和理论方法的基础上,提出了各种非常多样化的方案。然而,仍然有一个中心问题仍未解决:为什么非晶态GST在室温下能长时间稳定,而在高温下却能迅速转变为结晶相?在此首次通过基于同步加速器辐射异常X射线散射数据对非晶结构进行建模来揭示,锗和碲原子形成了具有环形成的“核” Ge-Te网络。还提出了Ge-Te网络可以在室温下稳定非晶相并可以保持在结晶相中。另一方面,锑并不有助于环的形成,而是与碲构成一个“伪”网络,其中特征性Sb-Te距离比共价Sb-Te键距更长。这表明,Sb-Te伪网络可能在结晶过程中充当形成关键核的前体。这些发现表明,Ge-Te核心网络负责非晶态相的出色稳定性和快速相变,而Sb-Te伪网络则负责触发临界裸像。

著录项

  • 来源
    《Advanced Functional Materials》 |2012年第11期|p.2251-2257|共7页
  • 作者单位

    Research & Utilization Division Japan Synchrotron Radiation Research Institute (JASRI/SPring-8) 1-1-1 Kouto, Sayo, Sayo, Hyogo 679-5198, Japan;

    Research & Utilization Division Japan Synchrotron Radiation Research Institute (JASRI/SPring-8) 1-1-1 Kouto, Sayo, Sayo, Hyogo 679-5198, Japan,Institute for Solid State Physics and Optics Wigner Research Centre for Physics Hungarian Academy of Sciences H-1525 Budapest, P. O. Box 49, Hungary;

    Research & Utilization Division Japan Synchrotron Radiation Research Institute (JASRI/SPring-8) 1-1-1 Kouto, Sayo, Sayo, Hyogo 679-5198, Japan;

    Research & Utilization Division Japan Synchrotron Radiation Research Institute (JASRI/SPring-8) 1-1-1 Kouto, Sayo, Sayo, Hyogo 679-5198, Japan,JST, CREST 5 Sanbancho, Chiyoda-ku, Tokyo 102-0075, Japan;

    JST, CREST 5 Sanbancho, Chiyoda-ku, Tokyo 102-0075, Japan,Materials Science and Analysis Technology Centre Panasonic Corporation 3-1-1 Yagumo-Nakamachi, Moriguchi Osaka 570-8501, Japan;

    Institute for Solid State Physics and Optics Wigner Research Centre for Physics Hungarian Academy of Sciences H-1525 Budapest, P. O. Box 49, Hungary;

    Research & Utilization Division Japan Synchrotron Radiation Research Institute (JASRI/SPring-8) 1-1-1 Kouto, Sayo, Sayo, Hyogo 679-5198, Japan;

    RIKEN/SPring-8 1-1-1 Kouto, Sayo, Sayo, Hyogo 679-5148, Japan;

    Digital & Network Technology Development Centre Panasonic Corporation Osaka, Japan;

    JST, CREST 5 Sanbancho, Chiyoda-ku, Tokyo 102-0075, Japan,Digital & Network Technology Development Centre Panasonic Corporation Osaka, Japan;

    Department of Material and Biological Chemistry Faculty of Science Yamagata University 1-4-12 Koshirakawa, Yamagata 990-8560, Japan;

    Research & Utilization Division Japan Synchrotron Radiation Research Institute (JASRI/SPring-8) 1-1-1 Kouto, Sayo, Sayo, Hyogo 679-5198, Japan;

    Research & Utilization Division Japan Synchrotron Radiation Research Institute (JASRI/SPring-8) 1-1-1 Kouto, Sayo, Sayo, Hyogo 679-5198, Japan,JST, CREST 5 Sanbancho, Chiyoda-ku, Tokyo 102-0075, Japan,RIKEN/SPring-8 1-1-1 Kouto, Sayo, Sayo, Hyogo 679-5148, Japan,Department of Advanced Materials Science School of Frontier Science The University of Tokyo 5-1-5 Kashiwanoha, Chiba 277-8561, Japan;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号