首页> 外文期刊>Advanced Functional Materials >Nanostructured Metallo-Dielectric Quasi-Crystals: Towards Photonic-Plasmonic Resonance Engineering
【24h】

Nanostructured Metallo-Dielectric Quasi-Crystals: Towards Photonic-Plasmonic Resonance Engineering

机译:纳米结构的介电准晶体:走向光子-声波共振工程。

获取原文
获取原文并翻译 | 示例
           

摘要

The first evidence of out-of-plane resonances in hybrid metallo-dielectric quasi-crystal (QC) nanostructures composed of metal-backed aperiodically patterned low-contrast dielectric layers is reported. Via experimental measurements and full-wave numerical simulations, these resonant phenomena are characterized with specific reference to the Ammann-Beenker (quasi-periodic, octagonal) tiling lattice geometry and the underlying physics is investigated. In particular, it is shown that, by comparison with standard periodic structures, a moderately richer spectrum of resonant modes may be excited, due to the easier achievement of phase-matching conditions endowed by its denser Bragg spectrum. Such modes are characterized by a distinctive plasmonic or photonic behavior, discriminated by their field distribution and dependence on the metal film thickness. Moreover, the response is accurately predicted via computationally affordable periodic-approximant-based numerical modeling. The enhanced capability of QCs to control number, spectral position, and mode distribution of hybrid resonances may be exploited in a variety of possible applications. To assess this aspect, label-free biosensing is studied via characterization of the surface sensitivity of the proposed structures with respect to local refractive index changes. Moreover, it is also shown that the resonance-engineering capabilities of QC nanostructures may be effectively exploited in order to enhance the absorption efficiency of thin-film solar cells.
机译:报告了由金属背衬的非周期性构图的低对比度介电层组成的混合金属介电准晶体(QC)纳米结构中平面外共振的第一个证据。通过实验测量和全波数值模拟,这些共振现象的特征是具体参考了Ammann-Beenker(准周期,八边形)拼贴晶格的几何形状,并研究了其基本物理原理。特别地,显示出,与标准周期性结构相比,由于更容易实现由其较密的布拉格谱所赋予的相位匹配条件,因此可以激发谐振模式的中度更丰富的频谱。这种模式的特征在于独特的等离子体或光子行为,通过其场分布和对金属膜厚度的依赖性来区分。此外,通过计算上可承受的基于周期近似的数值模型可以准确预测响应。 QC控制混合共振的数量,频谱位置和模式分布的增强功能可以在多种可能的应用中得到利用。为了评估此方面,通过表征拟议结构相对于局部折射率变化的表面敏感性,研究了无标记生物传感。此外,还显示出可以有效地利用QC纳米结构的共振工程设计能力,以提高薄膜太阳能电池的吸收效率。

著录项

  • 来源
    《Advanced Functional Materials》 |2012年第20期|p.4389-4398|共10页
  • 作者单位

    Optoelectronic Division Department of Engineering University of Sannio C.so Garibaldi 107, 1-82100, lenevento, Italy;

    Optoelectronic Division Department of Engineering University of Sannio C.so Garibaldi 107, 1-82100, lenevento, Italy;

    Optoelectronic Division Department of Engineering University of Sannio C.so Garibaldi 107, 1-82100, lenevento, Italy;

    CNR-ICIB "E. Caianiello" Via Campi Flegrei, 34, 1-80078 Pozzuoli (NA), Italy;

    CNR-ICIB "E. Caianiello" Via Campi Flegrei, 34, 1-80078 Pozzuoli (NA), Italy;

    CNR-SPIN and Waves Group Department of Engineering University of Sannio C.so Garibaldi 107, 1-82100, Benevento, Italy;

    Optoelectronic Division Department of Engineering University of Sannio C.so Garibaldi 107, 1-82100, lenevento, Italy;

    Optoelectronic Division Department of Engineering University of Sannio C.so Garibaldi 107, 1-82100, lenevento, Italy,CNR-ICIB "E. Caianiello" Via Campi Flegrei, 34, 1-80078 Pozzuoli (NA), Italy;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号