首页> 外文期刊>Advanced Functional Materials >Following Chemical Charge Trapping in Pentacene Thin Films by Selective Impurity Doping and Wavelength- Resolved Electric Force Microscopy
【24h】

Following Chemical Charge Trapping in Pentacene Thin Films by Selective Impurity Doping and Wavelength- Resolved Electric Force Microscopy

机译:选择性杂质掺杂和波长分辨力显微镜观察并五苯薄膜中的化学电荷俘获

获取原文
获取原文并翻译 | 示例
           

摘要

Charge trapping is one of several factors that limit the performance of organic electronic materials, yet even in pentacene, a prototypical small-molecule semiconductor, the precise chemical nature of charge trapping remains poorly understood. Here the effects of three chemical trap-precursor candidates are examined by layering thin-film pentacene transistors with different pentacene defect species. The resulting charge trapping is studied in each device via scanning-probe electric force microscopy coupled with variable-wavelength sample illumination. Firstly, it is found that layering with pentacen-6(13H)-one (PHO) readily produces uniform charge trapping everywhere in the transistor channel, as expected for an active blanket-deposited trap-precursor. However, layering with 6,13-dihydropentacene (DHP) produces fewer, more-isolated traps, closely resembling the surface potential distribution in pristine pentacene thin films. Secondly, the rates of trap-clearing versus illuminating wavelength (trap-clearing spectra) are measured, revealing enhanced trap-clearing rates at wavelengths assigned to the absorption of either pentacene or the charged trap species. The trap-clearing spectrum for the PHO-layered sample closely resembles the spectrum obtained from pentacene aged in a working transistor, while the trap-clearing spectrum for the DHP-layered sample resembles the spectrum observed in pristine pentacene. We conclude that PHO competently creates traps in pentacene that match the expected trap-clearing spectrum for degraded pentacene, while DHP does not, and that the chemical trap species in aged pentacene is very likely PHO+.
机译:电荷俘获是限制有机电子材料性能的几个因素之一,但是即使在并五苯这种典型的小分子半导体中,电荷俘获的精确化学性质仍知之甚少。在这里,通过层叠具有不同并五苯缺陷种的薄膜并五苯晶体管来检查三种化学陷阱前体候选物的作用。通过扫描探针电力显微镜和可变波长样本照明,研究了每种设备中产生的电荷俘获。首先,发现与五态六(13H)-one(PHO)分层很容易在晶体管通道中各处产生均匀的电荷陷阱,这是对有源毯式沉积陷阱前体所期望的。但是,用6,13-​​二氢并五苯(DHP)分层会产生更少,更孤立的陷阱,非常类似于原始并五苯薄膜中的表面电势分布。其次,测量了陷阱清除率与照射波长(陷阱清除光谱)的比率,揭示了在并五苯或带电陷阱种类的吸收所分配的波长下陷阱清除率提高了。 PHO层样品的陷阱清除光谱与在工作晶体管中并五苯老化获得的光谱非常相似,而DHP层样品的陷阱清除光谱类似于在原始并五苯中观察到的光谱。我们得出的结论是,PHO可以在并五苯中充分地创建陷阱,该陷阱与降解的并五苯的预期陷阱清除光谱相匹配,而DHP则不然,而且老化的并五苯中的化学陷阱很可能是PHO +。

著录项

  • 来源
    《Advanced Functional Materials》 |2012年第24期|5096-5106|共11页
  • 作者单位

    Department of Chemistry and Chemical Biology Cornell University, Ithaca NY 14853, USA;

    Department of Materials Science and Engineering Cornell University Ithaca, NY 14853, USA;

    Department of Chemistry and Chemical Biology Cornell University, Ithaca NY 14853, USA;

    Department of Materials Science and Engineering Cornell University Ithaca, NY 14853, USA;

    Department of Chemistry and Chemical Biology Cornell University, Ithaca NY 14853, USA;

    Department of Chemistry and Chemical Biology Cornell University, Ithaca NY 14853, USA;

    Department of Chemistry and Chemical Biology Cornell University, Ithaca NY 14853, USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号