首页> 外文期刊>Advanced Functional Materials >Direct View on Nanoionic Proton Mobility
【24h】

Direct View on Nanoionic Proton Mobility

机译:纳米离子质子迁移率的直接视图

获取原文
获取原文并翻译 | 示例
           

摘要

The field of nanoionics is of great importance for the development of superior materials for devices that rely on the transport of charged ions, like fuel cells, batteries, and sensors. Often nanostructuring leads to enhanced ionic mobilities due to the induced space-charge effects. Here these large space-charge effects occurring in composites of the proton-donating solid acid CsHSO_4 and the proton-accepting TiO_2 or SiO_2 are studied. CsHSO_4 is chosen for this study because it can operate effectively as a fuel-cell electrolyte at elevated temperature while its low-temperature conductivity is increased upon nanostructuring. The composites have a negative enthalpy of formation for defects involving the transfer of protons from the acid to the acceptor. Very high defect densities of up to 10% of the available sites are observed by neutron diffraction. The effect on the mobility of the protons is observed directly using quasielastic neutron scattering and nuclear magnetic resonance spectros-copy. Surprisingly large fractions of up to 25% of the hydrogen ions show orders-of-magnitude enhanced mobility in the nanostructured composites of TiO_2 or SiO_2, both in crystalline CsHSO_4 and an amorphous fraction.
机译:纳米离子领域对于开发依赖于带电离子传输的设备(如燃料电池,电池和传感器)的高级材料至关重要。由于诱导的空间电荷效应,通常纳米结构导致离子迁移率提高。在此,研究了在给质子的固体酸CsHSO_4和质子接受的TiO_2或SiO_2的复合物中发生的这些大的空间电荷效应。之所以选择CsHSO_4,是因为它可以在高温下有效地用作燃料电池的电解质,而其低温电导率在纳米结构化时会增加。复合材料的缺陷形成焓为负,这涉及质子从酸到受体的转移。通过中子衍射观察到非常高的缺陷密度,高达可用位点的10%。使用准弹性中子散射和核磁共振波谱直接观察对质子迁移率的影响。令人惊讶的是,高达25%的氢离子的较大部分在TiO_2或SiO_2的纳米结构复合材料中,无论在晶体CsHSO_4中还是在非晶态部分中,均显示出数量级增强的迁移率。

著录项

  • 来源
    《Advanced Functional Materials》 |2011年第8期|p.1364-1374|共11页
  • 作者单位

    Fundamental Aspects of Materials and Energy Department of Radiation Radionuclides, and Reactors Faculty of Applied Sciences Delft University of Technology Mekelweg 15, 2629JB Delft, The Netherlands;

    Fundamental Aspects of Materials and Energy Department of Radiation Radionuclides, and Reactors Faculty of Applied Sciences Delft University of Technology Mekelweg 15, 2629JB Delft, The Netherlands;

    Institutfur Festkorperforschung Forschungszentrum Julich GmbH Julich Centre for Neutron Science at FRM II, 85747 Garching, Germany;

    Fundamental Aspects of Materials and Energy Department of Radiation Radionuclides, and Reactors Faculty of Applied Sciences Delft University of Technology Mekelweg 15, 2629JB Delft, The Netherlands;

    Nano structured Materials Department of Chemical Engineering Faculty of Applied Sciences Delft University of Technology Julianalaan 136, 2628 BL Delft, The Netherlands;

    Department of Physical Chemistry- Solid State NMR IMM, Radboud University Nijmegen Toernooiveld 1, 6525 ED Nijmegen, The Netherlands;

    Department of Physical Chemistry- Solid State NMR IMM, Radboud University Nijmegen Toernooiveld 1, 6525 ED Nijmegen, The Netherlands;

    Institut Laue-Langevin (ILL) BP 156, 38042 Grenoble, Cedex 9, France;

    Bragg Institute, Building 87 Australian Nuclear Science and Technology Organisation PMB Menai, NSW2234, Australia;

    Fundamental Aspects of Materials and Energy Department of Radiation Radionuclides, and Reactors Faculty of Applied Sciences Delft University of Technology Mekelweg 15, 2629JB Delft, The Netherlands;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号