首页> 外文期刊>Advanced Functional Materials >Highly Reproducible Surface-Enhanced Raman Scattering on a Capillarity-Assisted Gold Nanoparticle Assembly
【24h】

Highly Reproducible Surface-Enhanced Raman Scattering on a Capillarity-Assisted Gold Nanoparticle Assembly

机译:毛细管辅助金纳米粒子组件上的高度可再生的表面增强拉曼散射

获取原文
获取原文并翻译 | 示例
           

摘要

A facile method based on capillarity-assisted assembly is used to fabricate high-performance surface-enhanced Raman scattering (SERS) substrates employing clean Au nanopartides (NPs). This method is better than micro-channel way because the former may supply large-area uniform assembly and overcome the uneven radial distribution. Such densely-arranged assembly of Au NPs exhibits high reproducibility and large Raman enhancement factors of 3 x 10~(10), arising from strong electromagnetic field coupling induced by adjacent Au NPs. The spot-to-spot SERS signals show that the relative standard deviation (RSD) in the intensity of the main Raman vibration modes (1310, 1361,1509,1650 cm~(-1)) of Rhodamine 6C at a concentration of 1 x 10~(10) m are consistently less than 20%, demonstrating good spatial uniformity and reproducibility. The SERS signals of Sudan dye at a 1 x 10~(-8) m concentration also shows high reproducibility with a low RSD of <20%. Further, the assembly substrate is stable, retaining excellent uniformity and sensitivity after storage for months. This assembly strategy integrating the advantages of low-cost production, high sensitivity, and reproducibility would significantly facilitate practical SERS detection.
机译:一种基于毛细作用辅助组装的简便方法可用于制造采用清洁金纳米粒子(NP)的高性能表面增强拉曼散射(SERS)基板。该方法优于微通道方法,因为前者可以提供大面积的均匀装配并克服不均匀的径向分布。由于相邻的Au NPs产生强电磁场耦合,Au NPs的这种密集排列的组装体具有很高的重现性和3 x 10〜(10)的大拉曼增强因子。点对点SERS信号表明,若浓度为1 x,若丹明6C的主要拉曼振动模式(1310、1361、1509、1650 cm〜(-1))的强度的相对标准偏差(RSD)。 10〜(10)m始终小于20%,显示出良好的空间均匀性和可重复性。浓度为1 x 10〜(-8)m的苏丹染料的SERS信号也具有较高的重现性,RSD <20%。此外,组装基板是稳定的,在保存数月后仍保持优异的均匀性和灵敏度。结合低成本生产,高灵敏度和可重复性优点的这种组装策略将极大地促进实际SERS检测。

著录项

  • 来源
    《Advanced Functional Materials》 |2011年第17期|p.3337-3343|共7页
  • 作者单位

    Institute of Functional Nano and Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices Soochow University Suzhou, Jiangsu 215123, P. R. China;

    Institute of Functional Nano and Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices Soochow University Suzhou, Jiangsu 215123, P. R. China;

    Institute of Functional Nano and Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices Soochow University Suzhou, Jiangsu 215123, P. R. China;

    Institute of Functional Nano and Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices Soochow University Suzhou, Jiangsu 215123, P. R. China;

    Institute of Functional Nano and Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices Soochow University Suzhou, Jiangsu 215123, P. R. China;

    Center of Super-Diamond and Advanced Films Department of Physics and Materials Science City University of Hong Kong Hong Kong SAR, P. R. China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号