...
首页> 外文期刊>Advanced materials for optics and electronics >Nanograssed Micropyramidal Architectures for Continuous Dropwise Condensation
【24h】

Nanograssed Micropyramidal Architectures for Continuous Dropwise Condensation

机译:连续滴式冷凝的纳米草微金字塔结构。

获取原文
获取原文并翻译 | 示例
           

摘要

Engineering the dropwise condensation of water on surfaces is critical in a wide range of applications from thermal management (e.g. heat pipes, chip cooling etc.) to water harvesting technologies. Surfaces that enable both efficient droplet nucleation and droplet self-removal (i.e. droplet departure) are essential to accomplish successful dropwise condensation. However it is extremely challenging to design such surfaces. This is because droplet nucleation requires a wettable surface while droplet departure necessitates a super-hydrophobic surface. Here we report that these conflicting requirements can be satisfied using a hierarchical (multiscale) nanograssed micro-pyramid architecture that yield a gobal superhydrophobicity as well as locally wettable nucleation sites, allowing for ~65% increase in the drop number density and 450% increase in the drop self-removal volume as compared to a superhydrophobic surface with nanostructures alone. Further we find that synergistic co-operation between the hierarchical structures contributes directly to a continuous process of nucleation, coalescence, departure, and re-nucleation enabling sustained dropwise condensation over prolonged periods. Exploiting such multiscale coupling effects can open up novel and exciting vistas in surface engineering leading to optimal condensation surfaces for high performance electronics cooling and water condenser systems.
机译:在从热管理(例如热管,切屑冷却等)到集水技术的广泛应用中,设计水滴在表面上的滴滴至关重要。能够有效实现液滴成核和液滴自我去除(即液滴脱离)的表面对于成功实现逐滴冷凝至关重要。然而,设计这样的表面是极具挑战性的。这是因为液滴成核需要可润湿的表面,而液滴离开则需要超疏水的表面。在这里,我们报告说,使用产生纳米级超疏水性的​​局部(多尺度)纳米草微金字塔结构可以满足这些矛盾的要求,并且局部可湿性成核位点可以使液滴数密度增加约65%,而在液滴中增加450%。与仅具有纳米结构的超疏水表面相比,液滴的自我去除体积。此外,我们发现,层次结构之间的协同合作直接有助于成核,聚结,离去和重新成核的连续过程,从而能够在较长时期内持续滴加冷凝。利用这种多尺度耦合效应可以在表面工程中打开新颖而令人兴奋的远景,从而为高性能电子冷却和水冷凝器系统提供最佳的冷凝表面。

著录项

  • 来源
    《Advanced materials for optics and electronics》 |2011年第24期|p.4617-4623|共7页
  • 作者单位

    Department of Mechanical and Biomedical Engineering City University of Hong Kong, Hong Kong 999077, China;

    Department of Mechanical Engineering The Hong Kong University of Science and Technology Hong Kong 999077, China;

    Department of Mechanical Engineering The Hong Kong University of Science and Technology Hong Kong 999077, China;

    Department of Mechanical and Biomedical Engineering City University of Hong Kong, Hong Kong 999077, China;

    Department of Mechanical Engineering and Department of Materials Science and Engineering Rensselaer Polytechnic Institute, Troy, NY 12180, USA;

    Department of Mechanical Engineering The Hong Kong University of Science and Technology Hong Kong 999077, China;

    Department of Mechanical and Biomedical Engineering City University of Hong Kong, Hong Kong 999077, China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号