首页> 外文期刊>Advanced Functional Materials >Origins of Improved Hole-Injection Efficiency by the Deposition of MoO_3 on the Polymeric Semiconductor Poly(dioctylfluorene-a/t-benzothiadiazole)
【24h】

Origins of Improved Hole-Injection Efficiency by the Deposition of MoO_3 on the Polymeric Semiconductor Poly(dioctylfluorene-a/t-benzothiadiazole)

机译:MoO_3在聚合物半导体聚二辛基芴-a / t-苯并噻二唑上的沉积提高空穴注入效率的根源

获取原文
获取原文并翻译 | 示例
           

摘要

The electronic structure of the interfaces formed after deposition of MoO_3 hole-injection layers on top of a polymer light-emitting material, poly(dioctylfluorene-alt-benzothiadiazole) (F8BT), is studied by ultraviolet photoelectron spectroscopy (UPS), X-ray photoelectron spectroscopy and metastable atom electron spectroscopy. Significant band bending is induced in the F8BT film by MoO_3 "acceptors" that spontaneously diffuse into the F8BT "host" probably driven by kinetic energy of the deposited hot MoO_3. Further deposition leads to the saturation of the band bending accompanied by the formation of MoO_3 overlayers. Simultaneously, a new electronic state in the vicinity of the Fermi level appears on the UPS spectra. Since this peak does not appear in the bulk MoO_3 film, it can be assigned as an interface state between the MoO_3 overlayer and underlying F8BT film. Both band bending and the interface state should result from charge transfer from F8BT to MoO_3, and they appear to be the origin of the hole-injection enhancement by the insertion of MoO_3 layers between the F8BT light-emitting diodes and top anodes.
机译:通过紫外光电子能谱(UPS),X射线研究了MoO_3空穴注入层在聚合物发光材料聚二辛基芴-alt-苯并噻二唑(F8BT)上沉积后形成的界面的电子结构。光电子能谱和亚稳态原子电子能谱。 MoO_3“受体”在F8BT薄膜中引起明显的能带弯曲,这些受体可能自发地扩散到F8BT“主体”中,这很可能是由沉积的热MoO_3的动能驱动的。进一步的沉积导致带弯曲的饱和,并伴随着MoO_3覆盖层的形成。同时,UPS谱上出现费米能级附近的新电子状态。由于此峰未出现在块状MoO_3膜中,因此可以将其指定为MoO_3覆盖层和下面的F8BT膜之间的界面状态。带电弯曲和界面状态都应由F8BT到MoO_3的电荷转移引起,它们似乎是通过在F8BT发光二极管和顶部阳极之间插入MoO_3层来增强空穴注入的起源。

著录项

  • 来源
    《Advanced Functional Materials》 |2009年第23期|3746-3752|共7页
  • 作者单位

    Center for Frontier Science, Chiba University 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522 (Japan);

    Faculty of Science, Kyushu University CREST, Japan Science and Technology Agency 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581 (Japan) Advanced Materials Research Center, Nippon Shokubai Co., Ltd., 5-8 Nishi Otabi-cho, Suita, Osaka 564-8512, Japan;

    Graduate School of Advanced Integration Science, Chiba University 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522 (Japan);

    Graduate School of Advanced Integration Science, Chiba University 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522 (Japan);

    Graduate School of Advanced Integration Science, Chiba University 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522 (Japan);

    Graduate School of Advanced Integration Science, Chiba University 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522 (Japan);

    Faculty of Science, Kyushu University CREST, Japan Science and Technology Agency 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581 (Japan);

    Center for Frontier Science and Graduate School of Advanced Integration Science Chiba University 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522 (Japan);

    Center for Frontier Science and Graduate School of Advanced Integration Science Chiba University 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522 (Japan);

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号