首页> 外文期刊>Advanced Functional Materials >Harnessing the actuation potential of solid-state intercalation compounds
【24h】

Harnessing the actuation potential of solid-state intercalation compounds

机译:利用固态插层化合物的驱动潜力

获取原文
获取原文并翻译 | 示例
           

摘要

High-strain, high-force mechanical actuation technologies are desirable for numerous applications ranging from microelectromechanical systems (MEMS) to large-scale "smart structures" that are able to change shape to optimize performance. Here we show that electrochemical intercalation of inorganic compounds of high elastic modulus offers a low-voltage mechanism (less than 5 V) with intrinsic energy density approaching that of hydraulics and more than a hundred times greater than that of existing field-operated mechanisms, such as piezostriction and magnetostriction. Exploitation of the reversible crystallographic strains (several percent) of intercalation compounds while under high stress is key to realization of the available energy. Using a micromachined actuator design, we test the strain capability of oriented graphite due to electrochemical lithiation under stresses up to 200 MPa. We further demonstrate that simultaneous electrochemical expansion of the LiCoO2/graphite cathode/ anode couple can be exploited for actuation under stresses up to similar to 20 MPa in laminated macroscopic composite actuators of similar design to current lithium-ion batteries. While the transport-limited actuation mechanism of these devices results in intrinsically slower actuation compared to most ferroic materials, we demonstrate up to 6.7 mHz (150 s) cyclic actuation in a laminated actuator designed for a high charge/discharge rate. The potential for a new class of high-strain, high-force, moderate-frequency actuators suitable for a broad range of applications is suggested.
机译:对于从微机电系统(MEMS)到能够改变形状以优化性能的大型“智能结构”的众多应用,都需要高应变,高力的机械致动技术。在这里,我们表明,高弹性模量的无机化合物的电化学插层提供了一种低电压机制(小于5 V),其固有能量密度接近液压系统的固有能量密度,并且比现有的现场操作机制大100倍以上,例如作为压电收缩和磁致伸缩。在高应力下开发插层化合物的可逆晶体学应变(百分之几)是实现可用能量的关键。使用微机械执行器设计,我们测试了在高达200 MPa的应力下由于电化学锂化而导致的定向石墨的应变能力。我们进一步证明,在设计类似于当前锂离子电池的叠层宏观复合驱动器中,LiCoO2 /石墨阴极/阳极电偶的同时电化学膨胀可用于在高达20 MPa的应力下驱动。尽管这些设备的受运输限制的致动机制导致与大多数铁磁性材料相比本质上较慢的致动,但我们展示了为高充电/放电速率设计的层压致动器中高达6.7 mHz(150 s)的循环致动。提出了适用于广泛应用的新型高应变,高力,中频执行器的潜力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号