首页> 外文期刊>Advanced Functional Materials >Polymer light-emitting electrochemical cells: The formation and effects of doping-induced micro shorts
【24h】

Polymer light-emitting electrochemical cells: The formation and effects of doping-induced micro shorts

机译:聚合物发光电化学电池:掺杂引起的微短路的形成和作用

获取原文
获取原文并翻译 | 示例
           

摘要

A planar surface cell structure has been utilized to investigate a polymer light-emitting electrochemical cell (LEC), consisting of an active-material mixture of ply[2-methoxy-5-(2'-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV) and an ionic liquid, tetra-n-butylammonium trifluoromethanesulfonate, contacted by Au electrodes. It is shown that diffuse and needle shaped doping fronts originate from the electrodes (p-type from the positive electrode and n-type from the negative electrode) during the charging process at a temperature T) of 393 K. After a turn-on-time, a significant portion of the doping fronts makes contact close to the negative electrode to form a light-emitting p-i-n junction, but at some points p-type doping protrudes all the way to the negative electrode to form what are effectively micro shorts. It is shown that the consequences of such doping-induced micro shorts during a subsequent stabilized "frozen junction" operation at T = 200 K are drastic; the current-rectification ratio (RR) is low and the quantum efficiency (QE) is far from optimum. Both RR and QE increase significantly during long-term operation under frozen junction conditions, demonstrating that the lifetime of the doping-induced micro shorts is limited even under such stabilized conditions. Still, it is clear that it is critical for the optimization and further development of LECs to find new types of active material and electrode combinations that allow for formation of a continuous p-i-n junction in the center of the interelectrode gap.
机译:平面表面电池结构已用于研究聚合物发光电化学电池(LEC),该电池由p [[2-甲氧基-5-(2'-乙基己氧基)-1,4-亚苯基亚乙烯基]的活性材料混合物组成(MEH-PPV)和一种离子液体四氟丁基磺酸三正丁铵盐,通过Au电极接触。结果表明,在温度为393 K的充电过程中,扩散和针状掺杂前沿源自电极(p型源自正极,n型源自负极)。一段时间后,大部分的掺杂前沿使接触点靠近负极,从而形成发光针结,但在某些点上,p型掺杂一直向负极突出,从而形成有效的微短路。结果表明,在随后的稳定的“冻结结”操作中,在T = 200 K时,这种由掺杂引起的微短路的后果是严重的。电流整流比(RR)低,量子效率(QE)远非最佳。在冻结结条件下长期运行期间,RR和QE均显着增加,表明即使在这种稳定条件下,掺杂引起的微短路的寿命也受到限制。仍然很清楚,对于LEC的优化和进一步开发至关重要的是找到新型的活性材料和电极组合,以允许在电极间间隙的中心形成连续的p-i-n结。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号