首页> 外文期刊>Advanced Functional Materials >Engineering Increased Stability into Self-Assembled Protein Fibers
【24h】

Engineering Increased Stability into Self-Assembled Protein Fibers

机译:工程技术提高了自组装蛋白纤维的稳定性

获取原文
获取原文并翻译 | 示例
           

摘要

Two stages in the rational redesign of a peptide-based, self-assembling fiber (SAF) are described. The SAF system comprises two peptides designed to form an offset α-helical coiled-coil heterodimer. The "sticky-ends" are complementary and promote longitudinal assembly. Alone, the two peptides are unstructured, but co-assemble upon mixing to form α-helical fibrils, which bundle to form fibers 40-50 nm wide and tens of micrometers long. Assembly is controllable and occurs at pH7 in water, making SAFs a potential scaffold for 3D cell culture. The purposes of the redesigns were 1) to investigate the fiber-thickening process, and 2) to increase fiber stability for potential biological and biomedical applications. First, mutations were made to the original peptide designs to increase fibril-fibril interactions and so produce thicker and more-stable fibers. The second iteration aimed to increase the primary peptide-peptide interactions by increasing the overlap in the offset dimer and so promote the initial step in fiber formation. As judged by circular dichroism spectroscopy and transmission electron microscopy, both iterations improved fiber assembly and stability: the critical peptide concentration for assembly improved from 60 μM to 4 μM; the midpoint of thermal unfolding increased from 22℃ to 65℃; and the salt tolerance improved from 75 μM to greater than 250 μM KCl. These improvements bring closer applications of the SAF system under physiological conditions, for example as a biocompatible material for 3D cell culture. In addition, ordered surface features were observed in the second- and third-generation fibers compared with the original design. This indicates improved internal order in the redesigned fibers. In turn, this suggests a molecular mechanism for the improved stability and sheds light on the fiber-assembly process.
机译:描述了基于肽的自组装纤维(SAF)的合理重新设计的两个阶段。该SAF系统包含两个肽,这些肽被设计成形成偏移的α-螺旋卷曲螺旋异二聚体。 “粘性末端”是互补的并且促进纵向组装。单独地,这两种肽是未结构化的,但是在混合时共组装以形成α-螺旋原纤维,所述α-螺旋原纤维捆束以形成40-50nm宽且数十微米长的纤维。组装是可控制的,并且在水中的pH值为7时发生,这使SAF成为3D细胞培养的潜在支架。重新设计的目的是1)研究纤维增稠过程,以及2)增加纤维的稳定性,以用于潜在的生物和生物医学应用。首先,对原始肽设计进行了突变,以增加原纤维与原纤维之间的相互作用,从而产生更粗,更稳定的纤维。第二次迭代旨在通过增加偏移二聚体中的重叠来增加一级肽与肽的相互作用,从而促进纤维形成的初始步骤。通过圆二色光谱和透射电子显微镜判断,两次迭代均改善了纤维的组装和稳定性:组装时的关键肽浓度从60μM提高到4μM;热展开的中点从22℃增加到65℃。耐盐性从75μM提高到大于250μMKCl。这些改进使SAF系统在生理条件下更紧密地应用,例如作为3D细胞培养的生物相容性材料。此外,与原始设计相比,在第二代和第三代光纤中观察到有序的表面特征。这表明在重新设计的光纤中内部秩序得到改善。反过来,这表明了提高稳定性的分子机制,并为纤维组装过程提供了线索。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号