首页> 外文期刊>Advanced Functional Materials >Theoretical design of catalysts for the heterolytic splitting of H-2
【24h】

Theoretical design of catalysts for the heterolytic splitting of H-2

机译:H-2杂化裂解催化剂的理论设计

获取原文
获取原文并翻译 | 示例
           

摘要

Here, we briefly review recent advances in H-2 storage technologies relying on mixed proton-hydride and destabilized hydride materials. We establish a general relationship across different materials: the higher the effective H content, the higher the temperatures needed to completely desorb H-2. Nevertheless, several systems show promising thermodynamics for H-2 desorption; however, the desorption kinetics still needs to be improved by the use of appropriate catalysts. Prompted by the importance of heterolytically splitting stable dihydrogen molecules for proton-hydride technologies, we attempt to theoretically design novel H-2 transfer catalysts. We focus mainly on M4NM4H8 catalysts (M = V, Ti, Zr, Hf, and Nm = Si, C, B, N), which should be able to preserve their functionality in the strongly reducing environment of a H-2 storage system. We are able to determine the energy of H-2 detachment from these molecules, as well as the associated energy barriers. In order to optimize the properties of the catalysts, we use isoelectronic atom-by-atom substitutions, vary the valence electron count, and borrow the concept of near-surface alloys from extended solids and apply it to molecular systems. We are able to obtain control over the enthalpy and electronic barriers for H-2 detachment. Molecules with the coordinatively unsaturated > Ti=Si < unit exhibit particularly favorable thermodynamics and show unusually small electronic barriers for H-2 detachment (> 0.27 eV) and attachment (> 0.07 eV). These and homologous ZrSi frameworks may serve as novel H-2 transfer catalysts for use with emerging lightweight hydrogen storage materials holding 5.0-10.4 wt % hydrogen, such as Li2NH,Li2Mg(NH)(2), Mg2Si, and LiH/MgB2 (discharged forms). Catalytic properties are also anticipated for appropriate defects on the surfaces and crystal edges of solid Ti and Zr silicides, and for Ti=Si ad-units chemisorbed on other support materials.
机译:在这里,我们简要回顾了依赖于混合质子氢化物和不稳定的氢化物材料的H-2储存技术的最新进展。我们在不同材料之间建立了一般关系:有效H含量越高,完全解吸H-2所需的温度越高。然而,有几种系统显示出H-2解吸的热力学。然而,仍然需要通过使用合适的催化剂来改善解吸动力学。由于质子氢化技术中杂化分裂稳定的二氢分子的重要性提示,我们尝试从理论上设计新颖的H-2转移催化剂。我们主要关注M4NM4H8催化剂(M = V,Ti,Zr,Hf和Nm = Si,C,B,N),该催化剂应能够在H-2存储系统的强烈还原环境中保留其功能。我们能够确定H-2从这些分子脱离的能量以及相关的能垒。为了优化催化剂的性能,我们使用等电子原子-原子取代,改变价电子数,并从扩展固体中借用近表面合金的概念并将其应用于分子系统。我们能够控制H-2分离的焓和电子屏障。配位不饱和> Ti = Si <单元的分子表现出特别良好的热力学,并且显示出H-2脱离(> 0.27 eV)和附着(> 0.07 eV)异常小的电子势垒。这些和同源的ZrSi骨架可用作新型H-2转移催化剂,可与含有5.0-10.4 wt%氢的新兴轻质储氢材料一起使用,例如Li2NH,Li2Mg(NH)(2),Mg2Si和LiH / MgB2(已释放)形式)。对于固态Ti和Zr硅化物的表面和晶体边缘上的适当缺陷,以及化学吸附在其他载体材料上的Ti = Si ad-units,也预期有催化性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号