...
首页> 外文期刊>Advanced Materials >Runaway Carbon Dioxide Conversion Leads to Enhanced Uptake in a Nanohybrid Form of Porous Magnesium Borohydride
【24h】

Runaway Carbon Dioxide Conversion Leads to Enhanced Uptake in a Nanohybrid Form of Porous Magnesium Borohydride

机译:失控的二氧化碳转化导致多孔硼氢化镁纳米杂化形式的吸收增加。

获取原文
获取原文并翻译 | 示例
           

摘要

Leveraging molecular-level controls to enhance CO2 capture in solid-state materials has received tremendous attention in recent years. Here, a new class of hybrid nanomaterials constructed from intrinsically porous gamma-Mg(BH4)(2) nanocrystals and reduced graphene oxide (MBHg) is described. These nanomaterials exhibit kinetically controlled, irreversible CO2 uptake profiles with high uptake capacities (>19.9 mmol g(-1)) at low partial pressures and temperatures between 40 and 100 degrees C. Systematic experiments and first-principles calculations reveal the mechanism of reaction between CO2 and MBHg and unveil the role of chemically activated, metastable (BH3-HCOO)(-) centers that display more thermodynamically favorable reaction and potentially faster reaction kinetics than the parent BH4- centers. Overall, it is demonstrated that size reduction to the nanoscale regime and the generation of reactive, metastable intermediates improve the CO2 uptake properties in metal borohydride nanomaterials.
机译:近年来,利用分子水平的控制来增强固态材料中的CO2捕集受到了极大的关注。在此,描述了一种新型的杂化纳米材料,该杂化纳米材料由本征多孔的γ-Mg(BH4)(2)纳米晶体和还原的氧化石墨烯(MBHg)构成。这些纳米材料在低分压和40至100摄氏度之间的温度下,具有高吸收容量(> 19.9 mmol g(-1))的动力学控制,不可逆的CO2吸收曲线。系统实验和第一性原理计算揭示了两者之间反应的机理CO2和MBHg并揭示了化学活化的亚稳态(BH3-HCOO)(-)中心的作用,与母体BH4-中心相比,该中心显示出更多的热力学上有利的反应和可能更快的反应动力学。总体而言,已证明将尺寸减小至纳米级范围并生成反应性,亚稳态的中间体可改善金属硼氢化物纳米材料中的CO2吸收性能。

著录项

  • 来源
    《Advanced Materials》 |2019年第44期|1904252.1-1904252.9|共9页
  • 作者单位

    Lawrence Berkeley Natl Lab Mol Foundry Berkeley CA 94720 USA;

    Univ Calif Berkeley Dept Chem Berkeley CA 94720 USA|Lawrence Berkeley Natl Lab Mat Sci Div Berkeley CA 94720 USA|Cornell Univ Dept Chem & Chem Biol Ithaca NY 14853 USA;

    Lawrence Berkeley Natl Lab Mol Foundry Berkeley CA 94720 USA|Lawrence Livermore Natl Lab Livermore CA 94550 USA;

    Lawrence Berkeley Natl Lab Adv Light Source Berkeley CA 94720 USA;

    Univ Calif Berkeley Dept Chem Berkeley CA 94720 USA|Lawrence Berkeley Natl Lab Mat Sci Div Berkeley CA 94720 USA;

    Univ Calif Berkeley Dept Chem Berkeley CA 94720 USA;

    Natl Renewable Energy Lab Colorado Colorado City CO 80401 USA;

    Natl Renewable Energy Lab Colorado Colorado City CO 80401 USA|Colorado Sch Mines Chem Dept 1012 14th St Golden CO 80401 USA;

    Lawrence Berkeley Natl Lab Adv Light Source Berkeley CA 94720 USA|Univ Calif Santa Cruz Dept Chem & Biochem Santa Cruz CA 95064 USA;

    Univ Calif Berkeley Dept Chem Berkeley CA 94720 USA|Lawrence Berkeley Natl Lab Mat Sci Div Berkeley CA 94720 USA|Univ Calif Berkeley Dept Chem & Biomol Engn Berkeley CA 94720 USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    carbon dioxide capture; kinetics; magnesium borohydride gamma phase (gamma-Mg(BH4)(2)); nanomaterials; reduced graphene oxide;

    机译:二氧化碳捕获动力学;硼氢化镁伽马相(γ-Mg(BH4)(2));纳米材料还原氧化石墨烯;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号