...
首页> 外文期刊>Advanced Materials >Embedded Branch-Like Organic/Metal Nanowire Heterostructures: Liquid-Phase Synthesis, Efficient Photon- Plasmon Coupling, and Optical Signal Manipulation
【24h】

Embedded Branch-Like Organic/Metal Nanowire Heterostructures: Liquid-Phase Synthesis, Efficient Photon- Plasmon Coupling, and Optical Signal Manipulation

机译:嵌入式的类似分支的有机/金属纳米线异质结构:液相合成,有效的光子-等离激元耦合和光信号操纵

获取原文
获取原文并翻译 | 示例
           

摘要

Manipulation of photons at subwavelength scale is crucial for the realization of nanophotonic circuits for next-generation optical information processing. Dielectric waveguides, fabricated from organic, inorganic and polymer materials,'4' exhibit low optical losses to control the flow of light, but optical confinement in these structures is restricted by the diffraction limit. A way of addressing this issue is to exploit surface plasmon polaritons (SPPs), which can spatially confine light in subwavelength metallic structures. Unfortunately, the ohmic losses inhibit the transfer of optical signals across an entire circuit solely with plasmonic waveguides. Hybrid systems assembled from plasmonic and photonic nanowires could reduce the losses of the whole circuit. More importantly, such wire-to-wire coupling scheme offers high efficiency for SPPs excitation in metal nanowires. To date, most hybrid systems were fabricated by lithography or micromanipulation, however, these methods are either too complicated or unfit for the achievement of stable heterojunctions due to the simple point contact between the plasmonic and photonic nanowires.
机译:亚波长尺度的光子操纵对于实现下一代光学信息处理的纳米光子电路至关重要。由有机,无机和聚合物材料制成的介电波导“ 4”显示出低的光学损耗以控制光的流动,但是这些结构中的光学限制受到衍射极限的限制。解决此问题的一种方法是利用表面等离振子极化子(SPPs),可以在空间上将光限制在亚波长金属结构中。不幸的是,欧姆损耗仅通过等离子波导管抑制了光信号在整个电路中的传输。由等离激元和光子纳米线组装而成的混合系统可以减少整个电路的损耗。更重要的是,这种线对线耦合方案为金属纳米线中的SPP激发提供了高效率。迄今为止,大多数混合系统是通过光刻或显微操作制造的,但是,由于等离激元和光子纳米线之间的简单点接触,这些方法要么太复杂,要么不适合实现稳定的异质结。

著录项

  • 来源
    《Advanced Materials》 |2013年第20期|2784-2788|共5页
  • 作者单位

    Beijing National Laboratory for Molecular Sciences (BNLMS) CAS Key Laboratory of Photochemistry Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, China;

    Beijing National Laboratory for Molecular Sciences (BNLMS) CAS Key Laboratory of Photochemistry Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, China;

    Beijing National Laboratory for Molecular Sciences (BNLMS) CAS Key Laboratory of Photochemistry Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, China;

    Beijing National Laboratory for Molecular Sciences (BNLMS) CAS Key Laboratory of Photochemistry Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, China;

    Beijing National Laboratory for Molecular Sciences (BNLMS) CAS Key Laboratory of Photochemistry Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号