...
首页> 外文期刊>Advanced Materials >Patterned Growth of Crystalline Organic Heterostructures
【24h】

Patterned Growth of Crystalline Organic Heterostructures

机译:结晶有机异质结构的图案生长

获取原文
获取原文并翻译 | 示例
           

摘要

Over the last decade, organic electronics is becoming a reality, thanks to the improvements in material design, variety, and stability, as well as in mild technological processes developed ad hoc for easily damageable materials. Some organic devices, already demonstrated since years (transistors, photovoltaic (PV) cells, and detectors), still require a higher control of both materials and architectures. For example, in a PV cell light harvesting, exciton transport, charge separation, and charge --transport towards the electrodes are fundamental steps, each one carried out at best by different materials, to be properly coupled through controlled interfaces. In addition, a nano-structured morphology in systems containing mixtures of donor-acceptor molecules or, in the language of semiconductor physics, p-type and n-type materials, can improve the efficiency of organic PV devices, provided that homogeneous domains of the two materials form, large enough to display the solid state properties, but small enough to be shorter than exciton diffusion length. Such domains should be nm-sized and permit direct percolation pathways for the charge carriers to the electrodes, while forming large interfacial areas. A fundamental improvement can therefore be obtained by joining crystallinity and nanometer-sized structure of the organic heterojunctions, so that the resulting devices would share many of the benefits of organic/inorganic quantum dot cells and of all-organic bulk heterojunctions, without many of their disadvantages.
机译:在过去的十年中,由于材料设计,种类和稳定性的改进以及专为易损坏材料开发的温和技术工艺的改进,有机电子技术已成为现实。多年来已经证明的某些有机器件(晶体管,光伏(PV)电池和检测器)仍然需要对材料和体系结构进行更高的控制。例如,在PV电池中,光收集,激子传输,电荷分离和电荷向电极的传输是基本步骤,每个步骤充其量只能由不同的材料完成,并通过受控界面进行适当耦合。此外,在含有施主-受主分子混合物或用半导体物理学的语言来说,p型和n型材料的混合物中的纳米结构形态可以提高有机PV器件的效率,前提是该结构的均质域两种材料形式,足够大以显示固态性质,但足够小以小于激子扩散长度。这样的域应该是纳米大小的,并允许电荷载体到电极的直接渗透路径,同时形成大的界面面积。因此,可以通过结合有机异质结的结晶度和纳米级结构来获得根本的改善,从而使所得器件可以共享有机/无机量子点单元和全有机体异质结的许多优点,而无需它们的很多缺点。

著录项

  • 来源
    《Advanced Materials》 |2013年第20期|2804-2808|共5页
  • 作者单位

    Dept of Materials Science Via Cozzi 53, 20125 Milano, Italy;

    Dept of Materials Science Via Cozzi 53, 20125 Milano, Italy;

    Dept of Earth and Environmental Sciences Piazza della Scienza 4, 20126 Milano, Italy;

    Dept of Materials Science Via Cozzi 53, 20125 Milano, Italy;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号