...
首页> 外文期刊>Advanced Materials >Exploiting a Single-Crystal Environment to Minimize the Charge Noise on Qubits in Silicon
【24h】

Exploiting a Single-Crystal Environment to Minimize the Charge Noise on Qubits in Silicon

机译:利用单晶环境,以最小化硅中贵族​​的电荷噪声

获取原文
获取原文并翻译 | 示例
           

摘要

Electron spins in silicon offer a competitive, scalable quantum-computing platform with excellent single-qubit properties. However, the two-qubit gate fidelities achieved so far have fallen short of the 99% threshold required for large-scale error-corrected quantum computing architectures. In the past few years, there has been a growing realization that the critical obstacle in meeting this threshold in semiconductor qubits is charge noise arising from the qubit environment. In this work, a notably low level of charge noise ofS(0) = 0.0088 +/- 0.0004 mu eV(2)Hz(-1)is demonstrated using atom qubits in crystalline silicon, achieved by separating the qubits from surfaces and interface states. The charge noise is measured using both a single electron transistor and an exchange-coupled qubit pair that collectively provide a consistent charge noise spectrum over four frequency decades, with the noise levelS(0)being an order of magnitude lower than previously reported. Low-frequency detuning noise, set by the total measurement time, is shown to be the dominant dephasing source of two-qubit exchange oscillations. With recent advances in fast (approximate to mu s) single-shot readout, it is shown that by reducing the total measurement time to approximate to 1 s, 99.99% two-qubitSWAPgate fidelities can be achieved in single-crystal atom qubits in silicon.
机译:硅中的电子旋转提供了具有优异的单态特性的竞争,可扩展的量子计算平台。然而,到目前为止所实现的双量标门保真度缺少大规模纠错量子计算架构所需的99%阈值。在过去的几年里,已经越来越明显地实现了在半导体QUBITS中满足该阈值的关键障碍是从Qubit环境引起的充电噪声。在这项工作中,使用晶体硅中的Atom Qubits在晶体型硅中分离Qubits和接口状态来证明使用晶体Qubits(0)= 0.0088 +/- 0.0004 mueV(2)Hz(-1)的显着低电荷噪声水平。使用单个电子晶体管和交换耦合的Qubbit对测量电荷噪声,其共同提供四个频率的一致电荷噪声谱,噪声水平(0)是比先前报告的数量级。通过总测量时间设定的低频失谐噪声被显示为双量标交换振荡的主导脱离源。随着最近的快速(近似到MU S)单次读数的进步,所以通过减少近1 s的总测量时间,可以在硅中的单晶原子Qubbits中实现99.99%的双千兆夸张的保真度。

著录项

  • 来源
    《Advanced Materials》 |2020年第40期|2003361.1-2003361.8|共8页
  • 作者单位

    Univ New South Wales Ctr Excellence Quantum Computat & Commun Technol Sch Phys Sydney NSW 2052 Australia|UNSW Sydney Silicon Quantum Comp Pty Ltd Level 2 Newton Bldg Kensington NSW 2052 Australia;

    Univ New South Wales Ctr Excellence Quantum Computat & Commun Technol Sch Phys Sydney NSW 2052 Australia|UNSW Sydney Silicon Quantum Comp Pty Ltd Level 2 Newton Bldg Kensington NSW 2052 Australia;

    Univ New South Wales Ctr Excellence Quantum Computat & Commun Technol Sch Phys Sydney NSW 2052 Australia|UNSW Sydney Silicon Quantum Comp Pty Ltd Level 2 Newton Bldg Kensington NSW 2052 Australia;

    Univ New South Wales Ctr Excellence Quantum Computat & Commun Technol Sch Phys Sydney NSW 2052 Australia;

    Univ New South Wales Ctr Excellence Quantum Computat & Commun Technol Sch Phys Sydney NSW 2052 Australia;

    Univ New South Wales Ctr Excellence Quantum Computat & Commun Technol Sch Phys Sydney NSW 2052 Australia|UNSW Sydney Silicon Quantum Comp Pty Ltd Level 2 Newton Bldg Kensington NSW 2052 Australia;

    Univ New South Wales Ctr Excellence Quantum Computat & Commun Technol Sch Phys Sydney NSW 2052 Australia|UNSW Sydney Silicon Quantum Comp Pty Ltd Level 2 Newton Bldg Kensington NSW 2052 Australia;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    atomic electronics; charge noise; quantum computing; qubits; single-crystal silicon;

    机译:原子电子;电荷噪声;量子计算;QUBITS;单晶硅;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号