...
首页> 外文期刊>Advanced Materials >Charge-Transport Anisotropy Due to Grain Boundaries in Directionally Crystallized Thin Films of Regioregular Poly(3-hexylthiophene)
【24h】

Charge-Transport Anisotropy Due to Grain Boundaries in Directionally Crystallized Thin Films of Regioregular Poly(3-hexylthiophene)

机译:区域规则规整的聚(3-己基噻吩)的定向结晶薄膜中由于晶界引起的电荷传输各向异性。

获取原文
获取原文并翻译 | 示例
           

摘要

Recent developments in the performance of organic semiconductors are proving that these materials have the potential to make a significant impact in macroelectronics. Fabrication of large-area devices, such as transistor arrays for display backplanes, light-emitting diode arrays, and large-area photovoltaic cells benefit from the possibility of solution processing and patterning on flexible substrates. As organic semiconductors approach commercialization, there is a need to better understand the relationship between charge transport and microstructure, in particular to identify the inherent bottlenecks to charge transport. A common method to investigate the effect of specific micro-structural features on electrical performance is to introduce known or controlled defects. In noncrystalline, glassy polymeric semiconductors, such as poly-9,9'-dioctyl-fluorene-co-bithiophene (F8T2), studies have focused on interchain versus intrachain transport, where anisotropic transport was realized by aligning the backbone of the polymer molecule on rubbed polyimide.
机译:有机半导体性能的最新发展证明,这些材料具有对宏观电子学产生重大影响的潜力。大面积装置的制造,例如用于显示底板的晶体管阵列,发光二极管阵列和大面积光伏电池,得益于在柔性基板上进行溶液处理和图案化的可能性。随着有机半导体的商业化,有必要更好地理解电荷传输和微结构之间的关系,特别是确定电荷传输的固有瓶颈。研究特定的微结构特征对电性能的影响的常用方法是引入已知的或受控的缺陷。在非晶态玻璃状聚合物半导体中,例如聚9,9'-二辛基芴-co-bithiophene(F8T2),研究集中于链间传输与链内传输,其中各向异性传输是通过将聚合物分子的主链对准聚酰亚胺

著录项

  • 来源
    《Advanced Materials》 |2009年第16期|1568-1572|共5页
  • 作者单位

    476 Lomita Mall, 213 McCullough Building Stanford, CA 94305 (USA);

    2575 Sand Hill Road, Mailstop 0069 Menlo Park, CA 94025 (USA);

    Department of Chemistry Imperial College of London South Kensington Campus London SW7 2AZ (UK);

    Queen Mary University of London Mile End Road, Eng. 224 London E14NS (UK);

    476 Lomita Mall, 239 McCullough Building Stanford, CA 94305 (USA);

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号