...
首页> 外文期刊>Advanced Materials >Highly Conductive Sheets from Millimeter-Long Single-Walled Carbon Nanotubes and Ionic Liquids: Application to Fast-Moving, Low-Voltage Electromechanical Actuators Operable in Air
【24h】

Highly Conductive Sheets from Millimeter-Long Single-Walled Carbon Nanotubes and Ionic Liquids: Application to Fast-Moving, Low-Voltage Electromechanical Actuators Operable in Air

机译:毫米长的单壁碳纳米管和离子液体制成的高导电片材:在空气中可移动的快速移动,低压机电执行器中的应用

获取原文
获取原文并翻译 | 示例
           

摘要

Low-voltage electroactive polymer (EAP) actuators have great potential for a variety of practical applications, if they are operable in air quickly over a long period of time with a large movement under ambient conditions. While ordinary EAP actuators work only in electrolyte solutions, Wallace and coworkers reported in 2003 'dry' EAP actuators that work in air, using ionic liquids as 'built-in' electrolytes. However, in principle, such conductive polymer-based actuators have an essential drawback in their lifetime and responsivity, because the motion is Faradaically driven via oxidation/reduction of the conjugated polymers. Meanwhile, Baughman and coworkers took notice of single-walled carbon nanotubes (SWNTs) as the active material, for their superb conductivity, surface width, and mechanical strength, and fabricated novel actuators using nanotube sheets obtainable from an aqueous SWNT dispersion, or nanotube fibers processed by dry spinning from SWNT forests produced by a chemical vapor deposition (CVD) method. These actuators are unique in that they are non-Faradaically driven via electrical charge/discharge of SWNTs. However, the actuation occurs only in electrolyte solutions.
机译:低压电活性聚合物(EAP)促动器,如果在环境条件下可长时间长时间在空气中快速运动且动作较大,则在各种实际应用中具有巨大潜力。虽然普通的EAP执行器只能在电解质溶液中使用,但Wallace及其同事在2003年报告称,在空气中使用离子液体作为“内置”电解质的“干式” EAP执行器。然而,原则上,这样的基于导电聚合物的致动器在其寿命和响应性方面具有本质上的缺点,因为运动是通过共轭聚合物的氧化/还原来法拉第驱动的。同时,Baughman及其同事注意到单壁碳纳米管(SWNT)作为活性材料,具有出色的导电性,表面宽度和机械强度,并使用可从水性SWNT分散体或纳米管纤维获得的纳米管板制造出新颖的执行器。由化学气相沉积(CVD)方法生产的SWNT森林干法纺丝加工而成。这些执行器的独特之处在于它们通过SWNT的充电/放电非法拉第驱动。然而,仅在电解质溶液中发生驱动。

著录项

  • 来源
    《Advanced Materials》 |2009年第16期|1582-1585|共4页
  • 作者单位

    Research Institute for Cell Engineering National Institute of Advanced Industrial Science and Technology (AIST) 1-8-31 Midorigaoka, Ikeda Osaka 563-8577 (Japan);

    Research Institute for Cell Engineering National Institute of Advanced Industrial Science and Technology (AIST) 1-8-31 Midorigaoka, Ikeda Osaka 563-8577 (Japan);

    Research Institute for Cell Engineering National Institute of Advanced Industrial Science and Technology (AIST) 1-8-31 Midorigaoka, Ikeda Osaka 563-8577 (Japan);

    Research Institute for Cell Engineering National Institute of Advanced Industrial Science and Technology (AIST) 1-8-31 Midorigaoka, Ikeda Osaka 563-8577 (Japan);

    Research Institute for Cell Engineering National Institute of Advanced Industrial Science and Technology (AIST) 1-8-31 Midorigaoka, Ikeda Osaka 563-8577 (Japan);

    Research Institute for Cell Engineering National Institute of Advanced Industrial Science and Technology (AIST) 1-8-31 Midorigaoka, Ikeda Osaka 563-8577 (Japan);

    Nanotube Research Center National Institute of Advanced Industrial Science and Technology (AIST) Central 5, 1-1-1 Higashi, Tsukuba Ibaraki 305-8565 (Japan);

    Nanotube Research Center National Institute of Advanced Industrial Science and Technology (AIST) Central 5, 1-1-1 Higashi, Tsukuba Ibaraki 305-8565 (Japan);

    Advanced Science Institute, RIKEN 2-1 Hirosawa, Wako Saitama 351-0198 (Japan);

    ERATO-SORST Nanospace Project Japan Science and Technology Agency (JST) National Museum of Emerging Science and Innovation 2-41 Aomi, Koto-ku, Tokyo 135-0064 (Japan);

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号