首页> 外文期刊>Advanced Materials >Self-Rupturing Microcapsules
【24h】

Self-Rupturing Microcapsules

机译:自破裂微胶囊

获取原文
获取原文并翻译 | 示例
           

摘要

This study shows that charged dex-HEMA microgels can be coated with polyelectrolytes using electrostatic interactions: CLSM and ζ-potential measurements proved that sequential adsorption of PSS and PAH at the surface of the dex-HEMA-DMAEMA microgels could be achieved. We observed that the permeability of the (PSS/ PAH)_3 coating was pH dependent: while it was permeable to 20 kDa FITC-dextran at pH7, it was impermeable at pH9. Consequently, as the major degradation product of dex-HEMA-DMAEMA microgels is 19 kDa dextran, we expected that at pH9 the (PSS/PAH)_3 coating should be impermeable to the degradation products. This should increase the (inner) swelling pressure of the microcapsules upon degradation of the entrapped gel, which could lead to a rupturing of the surrounding membrane. Indeed, sudden rupturing of the coating due to the degrading gel could be experimentally confirmed. In this way, self-rupturing microcapsules are obtained as they rupture without the need of an external trigger: the time of rupture is completely governed by the degradation kinetics of the entrapped gel, which governs how the swelling pressure of the microcapsules increases as a function of time. The dextran-based microgels described above are promising for biomedical applications based upon reports that dex-HEMA is biocompatible and because proteins can be easily incorporated inside dex-HEMA microgels with encapsulation efficiencies up to 90 %. Our ongoing research is focusing on the development of monodisperse microgels which should significantly enhance the simultaneous rupture of the micro-capsules, and we will further evaluate the potential of the self-rupturing microcapsules for pulsed drug delivery.
机译:这项研究表明,带电的dex-HEMA微凝胶可以通过静电作用被聚电解质包裹:CLSM和ζ电位测量证明,可以实现PSS和PAH在dex-HEMA-DMAEMA微凝胶表面的顺序吸附。我们观察到(PSS / PAH)_3涂层的渗透性与pH值有关:虽然在pH7时可渗透20 kDa FITC-葡聚糖,但在pH9时却不可渗透。因此,由于dex-HEMA-DMAEMA微凝胶的主要降解产物是19 kDa右旋糖酐,我们预计在pH9时(PSS / PAH)_3涂层应不渗透降解产物。当包埋的凝胶降解时,这将增加微胶囊的(内部)溶胀压力,这可能导致周围膜的破裂。实际上,可以通过实验确认由于降解的凝胶而导致的涂层突然破裂。以此方式,无需破裂即可获得自破裂的微胶囊,而无需外部触发:破裂时间完全由所包埋的凝胶的降解动力学控制,凝胶的降解动力学决定了微胶囊的溶胀压力如何随函数增加时间。基于报道的dex-HEMA具有生物相容性,并且由于蛋白质可以很容易地掺入dex-HEMA微凝胶中,其封装效率高达90%,上述基于葡聚糖的微凝胶有望用于生物医学。我们正在进行的研究集中在单分散微凝胶的开发上,该微凝胶应显着增强微胶囊的同时破裂,我们将进一步评估自破裂微胶囊在脉冲药物输送中的潜力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号