...
首页> 外文期刊>Advanced Materials >Crystalline Organization of a Methanofullerene as Used for Plastic Solar-Cell Applications
【24h】

Crystalline Organization of a Methanofullerene as Used for Plastic Solar-Cell Applications

机译:用于塑料太阳能电池的甲基富勒烯的晶体结构

获取原文
获取原文并翻译 | 示例
           

摘要

The discovery of ultra-fast and highly efficient photo-induced electron transfer from a semiconducting polymer onto fullerene has opened a new era for high-performance plastic photovoltaic (PV) cells and, more recently, for ambipolar field-effect transistors. Formation of an interpenetrating donor/acceptor network with nanoscale phase separation between the different functional components to obtain so-called bulk heterojunctions is essential to the achievement of high-performance solar cells. Although finely distributed C_(60)/conjugated polymer blends have been obtained, the limited solubility of pure fullerene C_(60) in common organic solvents and its high tendency to crystallization make it difficult to achieve the desired morphology in highly concentrated blends. To overcome these problems, solubilizing substitu-ents have been introduced into the fullerene C_(60). One successful example of this practice is a methanofullerene, [6,6]-phe-nyl C_(61)-butyric acid methyl ester (PCBM), which is, so far, the most widely used electron-acceptor in composite photovoltaic devices. Recently, plastic solar cells with excellent performance (power conversion efficiencies around 3 % under air mass (AM) 1.5 illumination) have been realized, based on PCBM as the main component in the active layer. Although PCBM has been widely used to fabricate high-performance plastic solar cells, less attention has been paid to the morphology of the pure material, particularly in thin films. In general, the degree of crystalline order of the material investigated, the crystal structure, and the stability of a specific phase severely affect the functional properties. Moreover, it is known that the formation of crystal phases and the crystalline organization is not only determined by the chemical architecture of the material itself, but also by the applied processing conditions.
机译:从半导体聚合物到富勒烯的超快速高效光致电子转移的发现为高性能塑料光伏(PV)电池,以及最近的双极性场效应晶体管打开了一个新时代。互穿的供体/受体网络的形成具有不同功能组件之间的纳米级相分离,以获得所谓的体异质结,这对于实现高性能太阳能电池至关重要。尽管已经获得了精细分布的C_(60)/共轭聚合物共混物,但是纯富勒烯C_(60)在常见有机溶剂中的溶解度有限,并且其结晶趋势很高,因此难以在高浓度共混物中获得所需的形态。为了克服这些问题,将富勒烯C_(60)中加入了可替代的取代基。这种做法的一个成功例子是甲亚富勒烯,[6,6]-苯甲基C_(61)-丁酸甲酯(PCBM),迄今为止,它是复合光伏器件中使用最广泛的电子受体。近来,基于PCBM作为活性层中的主要成分,已经实现了具有优异性能(在空气质量(AM)1.5照明下功率转换效率约为3%)的塑料太阳能电池。尽管PCBM已被广泛用于制造高性能塑料太阳能电池,但对纯材料的形态却很少关注,特别是在薄膜中。通常,所研究材料的晶体有序度,晶体结构和特定相的稳定性会严重影响功能性能。此外,已知晶相的形成和晶体组织不仅取决于材料本身的化学结构,而且还取决于所施加的加工条件。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号