首页> 外文期刊>Advances in Engineering Software >A neuro-fuzzy evaluation of steel beams patch load behaviour
【24h】

A neuro-fuzzy evaluation of steel beams patch load behaviour

机译:钢梁补片加载行为的神经模糊评估

获取原文
获取原文并翻译 | 示例
           

摘要

This work presents a neuro-fuzzy system developed to predict and classify the behaviour of steel beam web panels subjected to concentrated loads. A good performance was obtained with a previously developed neural network system [Fonseca ET, Vellasco MMBR, Vellasco PCGdaS, de Andrade SAL, Pacheco MAC. A neural network system for patch load prediction. J Intell Robot Syst 2001; 31(1/3):185-200; Fonseca ET, Vellasco PCGdaS, de Andrade SAL, Vellasco MMBR. A patch load parametric analysis using neural networks. J Constr Steel Res 2003;59(2):251-67; Fonseca ET, Vellasco PCGdaS, de Andrade SAL, Vellasco MMBR. Neural network evaluation of steel beam patch load capacity. Adv Eng Software 2003;34(11-12):763-72] when compared to available experimental data. The neural network accuracy was also significantly better than existing patch load prediction formulae [Lyse I, Godfrey HJ. Investigation of web buckling in steel beams. ASCE Trans 1935; 100:675-95, paper 1907; Bergfelt A. Patch loading on slender web. Influence of horizontal and vertical web stiffeners on the load carrying capacity, S79:l. Goteborg: Chalmers University of Technology, Publication; 1979, p. 1-143; Skaloud M, Drdacky M. Ultimate load design of webs of steel plated structures - Part 3 webs under concentrated loads. Staveb Cas 1975;23(C3): 140-60; Roberts TM, Newark ACB. Strength of webs subjected to compressive edge loading. J Struct Eng Am Soc Civil Eng 1997; 123(2): 176-83]. Despite this fact, the system architecture did not explicitly considered the fundamental different structural behaviour related to the beam collapse (web and flange yielding, web buckling and web crippling). Therefore this paper presents a neuro-fuzzy system that takes into account the patch load ultimate limit state. The neuro-fuzzy system architecture is composed of one neuro-fuzzy classification model and one patch load prediction neural network. The neuro-fuzzy model is used to classify the beams according to its pertinence to a specific structural response. Then, a neural network uses the pertinence established by the neuro-fuzzy classification model, to finally determine the beam patch load resistance.
机译:这项工作提出了一种神经模糊系统,用于预测和分类承受集中载荷的钢梁腹板的行为。使用先前开发的神经网络系统[Fonseca ET,Vellasco MMBR,Vellasco PCGdaS,de Andrade SAL,Pacheco MAC]获得了良好的性能。用于补丁负载预测的神经网络系统。 J Intell机器人系统2001; 31(1/3):185-200; Fonseca ET,Vellasco PCGdaS,de Andrade SAL,Vellasco MMBR。使用神经网络的补丁负载参数分析。 J Constr Steel Res 2003; 59(2):251-67; Fonseca ET,Vellasco PCGdaS,de Andrade SAL,Vellasco MMBR。神经网络对钢梁补片承载力的评估。 Adv Eng Software 2003; 34(11-12):763-72]与可用的实验数据进行比较。神经网络的准确性也明显优于现有的补丁负载预测公式[Lyse I,Godfrey HJ。钢梁腹板屈曲的研究。 ASCE Trans 1935; 100:675-95,纸1907; Bergfelt A.在纤细的网上加载补丁。水平和垂直腹板加劲肋对承载能力的影响,S79:1。哥德堡:查尔默斯工业大学,出版; 1979,第1-143; Skaloud M,DrdackyM。钢板结构腹板的极限载荷设计-第3部分集中载荷下的腹板。 Staveb Cas 1975; 23(C3):140-60; M + H。罗伯茨TM,纽瓦克ACB。承受压缩边缘载荷的纤维网的强度。 1997年,美国国家建筑工程学报。 123(2):176-83]。尽管如此,系统体系结构仍未明确考虑与梁收缩相关的根本不同的结构行为(腹板和翼缘屈服,腹板屈曲和腹板弯曲)。因此,本文提出了一种神经模糊系统,其中考虑了补丁加载的最终极限状态。神经模糊系统体系结构由一个神经模糊分类模型和一个斑块负荷预测神经网络组成。神经模糊模型用于根据光束与特定结构响应的相关性对光束进行分类。然后,神经网络利用神经模糊分类模型建立的针对性,最终确定梁斑负载的抵抗力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号