...
首页> 外文期刊>The Aeronautical Journal >Blade element momentum theory extended to model low Reynolds number propeller performance
【24h】

Blade element momentum theory extended to model low Reynolds number propeller performance

机译:桨叶动量理论扩展到低雷诺数螺旋桨性能模型

获取原文
获取原文并翻译 | 示例
           

摘要

Propellers are the predominant propulsion source for small unmanned aerial vehicles. At low advance ratios, large sections of the propeller blade can be stalled, and the Reynolds number faced by each blade can be low. This leads to difficulties in modelling propeller performance, as the aerodynamic models coupled with blade element methods usually only provide aerodynamic data for an assumed aerofoil section, for a small angle-of-attack range and for a single Reynolds number, while rotational effects are often ignored. This is specifically important at low advance ratios, and a consistent evaluation of the applicability of various methods to improve aerodynamic modelling is not available. To provide a systematic appraisal, three-dimensional (3D) scanning is used to obtain the aerofoil sections that make up a propeller blade. An aerodynamic database is formed using each extracted aerofoil section, across a wide range of angles of attack and Reynolds numbers. These databases are then modified to include the effects of rotation. When compared with experimental results, significant improvement in modelling accuracy is shown at low advance ratios relative to a generic blade element-momentum model, particularly for smaller propellers. Notably, when considering small propeller performance, efficiency modelling is improved from within 30% relative to experimental data to within 5% with the use of the extended blade element momentum theory method. The results show that combining Viterna and Corrigan flat plate theory with the Corrigan and Schillings stall delay model consistently yields the closest match with experimental data.
机译:螺旋桨是小型无人机的主要推进源。在低推进比下,螺旋桨叶片的大部分可能失速,并且每个叶片所面对的雷诺数可能很低。这导致难以对螺旋桨性能进行建模,因为空气动力学模型与叶片单元方法相结合通常仅针对假定的翼型截面,较小的攻角范围和单个雷诺数提供空气动力学数据,而旋转效应通常是忽略了。这在低进给比的情况下特别重要,并且无法对改善空气动力学模型的各种方法的适用性进行一致的评估。为了提供系统的评估,三维(3D)扫描用于获取构成螺旋桨叶片的机翼截面。使用每个提取的翼型截面,在很大的迎角和雷诺数范围内,形成一个空气动力学数据库。然后修改这些数据库以包括旋转效果。当与实验结果进行比较时,相对于通用叶片要素动量模型,特别是对于较小的螺旋桨,在低推进比下建模精度显着提高。值得注意的是,当考虑较小的螺旋桨性能时,使用扩展叶片要素动量理论方法,效率建模从相对于实验数据的30%提高到5%。结果表明,将Viterna和Corrigan平板理论与Corrigan和Schillings失速延迟模型相结合,始终能够得到与实验数据最接近的匹配。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号