...
首页> 外文期刊>The Aeronautical Journal >Design and optimisation of an aerofoil with active continuous trailing-edge flap
【24h】

Design and optimisation of an aerofoil with active continuous trailing-edge flap

机译:主动连续后缘襟翼的机翼设计与优化

获取原文
获取原文并翻译 | 示例
           

摘要

This paper presents the design and optimisation of an aerofoil with active continuous trailing edge flap (CTEF) investigated as a potential rotorcraft active control device. Several structural cross-section models are developed: high-fidelity NASA STRucture ANalysis (NASTRAN) and University of Michigan/Variational Asymptotic Beam Section Code (UM/VABS) models and a reduced-order analysis model. The validation of the reduced-order model is established by comparing its predictions of CTEF defoimations with those of NASTRAN and UM/VABS analyses, which both show good agreement. The 2D aerodynamic characteristics of the CTEF aerofoil are evaluated using XFOIL and Computational Fluid Dynamics (CFD) analyses: FUN3D and Overset Transonic Unsteady Rotor Navier-Stokes (OVERTURNS). XFOIL, coupled with the reduced-order structure model, is adopted for optimisation study. The accuracy of XFOIL in predicting the aerodynamic pressure of the CTEF aerofoil is verified using CFD simulations, which shows sufficient fidelity. The predicted variations of aerodynamic coefficients with a CTEF angle are compared among the aerodynamic analyses. The optimisation process is developed and applied to two bimorph bender configurations: a Macro-Fibre Composite (MFC) solid bender and an MFC stack bender. The solid bender is used to confirm the functioning of the optimisation procedure and to use its optimal layout as a reference to the stack design, the primary design object. A linear tapered shape is found to be the optimum for a MFC solid bender, which generates an average of 63% more CTEF angles than those of an optimal rectangular bender. An optimised MFC stack bender is shown to resemble the shape of the solid bender. A four-ply bimorph is considered the best choice among the stack layouts because of its large output of CTEF angles and relatively less plies required. The CTEF angle produced by the four-ply optimal layout ranges from 7.6 degrees to 5.3 degrees with speeds from 0 to 200 m/s at an angle of attack (AoA) of 6 degrees. The reduction in the CTEF angle with AoA is less steep than that with speed, ranging from 6.5 degrees to 5.8 degrees with AoA from 0 to 8 degrees at speed of 166 m/s. An average of 14% increase in CTEF angles is achieved through optimisation for the four-ply bimorph.
机译:本文介绍了带有主动连续后缘襟翼(CTEF)的机翼的设计和优化,该机翼被研究为潜在的旋翼航空器主动控制装置。开发了几种结构横截面模型:高保真NASA结构分析(NASTRAN)和密歇根大学/变分渐近束截面代码(UM / VABS)模型和降阶分析模型。通过将CTEF变形的预测与NASTRAN和UM / VABS分析的预测相比较,可以建立降阶模型的验证。使用XFOIL和计算流体力学(CFD)分析对CTEF机翼的2D空气动力学特性进行了评估:FUN3D和超音速非定常转子Navier-Stokes(OVERTURNS)。 XFOIL结合降阶结构模型被用于优化研究。 XFOIL在预测CTEF翼型气动压力方面的准确性已通过CFD仿真得到了验证,这显示出足够的保真度。在空气动力学分析之间比较了空气动力学系数随CTEF角的预测变化。开发了优化过程并将其应用于两种双压电晶片弯曲机配置:宏纤维复合材料(MFC)固体弯曲机和MFC堆栈弯曲机。固态弯管机用于确认优化程序的功能,并使用其最佳布局作为主要设计对象堆栈设计的参考。发现线性锥形形状是MFC固态弯曲机的最佳选择,它产生的CTEF角平均比最佳矩形弯曲机平均多63%。经优化的MFC堆栈弯曲机显示为类似于实体弯曲机的形状。四层双压电晶片被认为是堆叠布局中的最佳选择,因为它的CTEF角输出量大且所需的层数相对较少。四层最佳布局产生的CTEF角范围为7.6度至5.3度,速度为0度至200 m / s,攻角(AoA)为6度。使用AoA时CTEF角的减小幅度不如使用速度时陡峭,在166 m / s的速度下,AoA从0到8度时CTEF角的减小范围为6.5度至5.8度。通过优化四层双压电晶片,CTEF角平均增加了14%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号