首页> 外文期刊>Aerospace and Electronic Systems, IEEE Transactions on >Nonlinear Stochastic Control for Space Launch Vehicles
【24h】

Nonlinear Stochastic Control for Space Launch Vehicles

机译:航天运载工具的非线性随机控制

获取原文
获取原文并翻译 | 示例
           

摘要

In designing a robust ascending control for space launch vehicles, uncertainties such as variations in aerodynamics, jet effects, hinge moments, mass property, and navigation processing, etc., have to be considered, and normally, time and labor intensive Monte Carlo simulations are used in order to achieve a desired tracking performance distribution. In this paper, a systematic stochastic control design method is applied based upon a direct quadrature method of moments. In conjunction with a nonlinear robust control and offline optimization through nonlinear programming, any order of stationary statistical moments can be directly controlled. Compared with existing stochastic control methodologies, the advantages of the proposed method are 1) the closed-loop tracking system is asymptotically stable, 2) any (attainable) higher order steady-state moments of the state/output variables can be controlled, 3) the system is stable up to the order of the highest moment selected in the design, 4) the state process can be unknown and is not required to be Gaussian, and 5) no Monte Carlo analysis is required in the design. Two simulation scenarios of the X-33 3-DOF attitude control in ascending phase have been used to demonstrate the capabilities of the proposed method, and the results are validated by Monte Carlo runs. Although the method is only evaluated in this paper in the attitude control of the reusable launch vehicle's ascending phase, the method will be applicable to a wider class of aero and space systems such as aircraft, unmanned aerial vehicle, missile, and satellite attitude control.
机译:在设计用于航天运载工具的稳健的上升控制时,必须考虑不确定性,例如空气动力学,射流效应,铰链力矩,质量特性和导航处理等方面的变化,并且通常需要时间和劳动力密集的蒙特卡洛模拟为了获得所需的跟踪性能分布而使用。本文基于矩量的直接正交方法,应用了系统的随机控制设计方法。结合非线性鲁棒控制和通过非线性编程进行的离线优化,可以直接控制任何顺序的静态统计矩。与现有的随机控制方法相比,该方法的优点是:1)闭环跟踪系统是渐近稳定的; 2)可以控制状态/输出变量的任何(可获得的)高阶稳态矩; 3)该系统在设计中选择的最高矩量级之前都是稳定的; 4)状态过程可以是未知的,不需要是高斯的; 5)设计中不需要蒙特卡洛分析。 X-33 3-DOF姿态控制在上升阶段的两个模拟场景已被用来证明所提出方法的功能,并通过蒙特卡洛(Monte Carlo)运行对结果进行了验证。尽管本文仅在可重复使用运载火箭上升阶段的姿态控制中评估了该方法,但该方法将适用于更广泛的航空航天系统,例如飞机,无人飞行器,导弹和卫星姿态控制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号