...
首页> 外文期刊>Aerospace science and technology >Aerodynamic shape optimization of a transonic fan by an adjoint-response surface method
【24h】

Aerodynamic shape optimization of a transonic fan by an adjoint-response surface method

机译:伴随响应面法优化跨音速风扇的空气动力学形状

获取原文
获取原文并翻译 | 示例
           

摘要

An adjoint-response surface method is developed to provide efficient surrogate model in a parametrized design space for aerodynamic optimization of turbomachinery blades. Our goal is to improve the adiabatic efficiency or equivalently reduce the entropy generation through blade row with a mass flow rate constraint. Firstly, an aerodynamic sensitivity analysis is conducted with a viscous adjoint method to find the suitable number of control points on the suction surface of the transonic NASA rotor 67. Then quadratic polynomial (QP) based response surfaces of 4, 6 and 8 parameters are examined to validate the advantages of the gradient-enhanced model. In the following 24-parameter aerodynamic design optimization case, a steepest descent optimization (SDO) based on adjoint gradient is, conducted, then QP based response surface model is constructed using both the values of cost function and its adjoint gradients with respect to geometry control parameters. We present the geometric features, overall aerodynamic improvements and flow details of optimal designs given by SDO and gradient-enhanced response surface model (GERSM). The effects of blade reshaping on shock system, tip clearance flow and flow separation at hub are examined. Also, off-design performances are analyzed regarding both adiabatic efficiency and stall margin. (C) 2017 Elsevier Masson SAS. All rights reserved.
机译:开发了一种伴随响应曲面方法,以在参数化设计空间中提供有效的替代模型,以优化涡轮机械叶片的空气动力学性能。我们的目标是提高绝热效率,或等效地通过质量流量约束降低通过叶片排产生的熵。首先,通过粘性伴随方法进行空气动力学灵敏度分析,以找到跨音速NASA转子67吸力表面上合适的控制点数量。然后检查基于二次多项式(QP)的4、6和8参数的响应表面验证梯度增强模型的优势。在以下的24参数空气动力学设计优化案例中,进行了基于伴随梯度的最速下降优化(SDO),然后针对几何控制,使用成本函数及其伴随梯度的值构建了基于QP的响应面模型参数。我们介绍了SDO和梯度增强响应面模型(GERSM)给出的最佳设计的几何特征,整体空气动力学改进和流程细节。检查了叶片重塑对减震系统,叶尖间隙流和轮毂处流分离的影响。此外,还分析了绝热性能和绝热效率以及失速裕度。 (C)2017 Elsevier Masson SAS。版权所有。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号