首页> 外文期刊>Aerospace science and technology >Distribution characteristics and mixing mechanism of a liquid jet injected into a cavity-based supersonic combustor
【24h】

Distribution characteristics and mixing mechanism of a liquid jet injected into a cavity-based supersonic combustor

机译:腔内超音速燃烧室中喷射液体的分布特性及混合机理

获取原文
获取原文并翻译 | 示例
           

摘要

Mechanism of the mixing process and distribution characteristics of a liquid jet injected into a supersonic crossflow with a Mach number of 2.85 in a cavity-based combustor are investigated by the Planar Laser Scattering (PLS) technique and the two-phase Large Eddy Simulation (LES). The simulation is based on the Eulerian-Lagrangian method coupling with the hybrid KH/RT/TAB breakup model. The instantaneous and averaged distribution of liquid spray in the central plane and the cross-sectional planes obtained by simulation are in good agreement with the experiments and correlations. Results show that the liquid spray core region is mainly distributed in a narrow area of the mainstream, while droplets in the cavity are sparse, and are distributed widely and uniformly. The temporal evolution of vortex structures in the jet boundary mixing layer is analyzed by marking 'family number', and the evolution of the droplets family from the forward-slash "" type to the less "<" type and finally the backslash "/" type is also revealed. The Counter-rotating Vortex Pairs (Upper CVP and Wall CVP) upstream of the cavity have a significant influence on the entrainment behavior of spray into the cavity. There exist spray sinking region and spray rising region in the cavity mouth. Two distinct induced vortices formed in the cavity results from the interactions between the jet and the cavity and these complex gas-phase vortices have a significant influence on the transport, mixing, and distribution of liquid droplets. (C) 2019 Elsevier Masson SAS. All rights reserved.
机译:通过平面激光散射(PLS)技术和两相大涡模拟(LES),研究了基于腔燃烧器的马赫数为2.85的超声速横流中喷射液体的混合过程和分布特性。 )。该模拟基于欧拉-拉格朗日方法和混合KH / RT / TAB分解模型。通过模拟获得的液体喷雾在中心平面和横截面上的瞬时平均分布与实验和相关性吻合良好。结果表明,喷液芯区域主要分布在主流的狭窄区域,而腔内的液滴稀疏,分布广泛且均匀。通过标记“家族数”来分析射流边界混合层中旋涡结构的时间演变,以及液滴族从正斜线“ ”型到较小的“ <”型,最后是反斜线“ /”的演变。类型也会显示出来。空腔上游的反向旋转涡流对(上部CVP和壁CVP)对喷雾进入空腔的夹带行为有重大影响。腔口中存在下沉区和上扬区。射流和空腔之间的相互作用导致在空腔中形成两个截然不同的诱发涡,而这些复杂的气相涡对液滴的传输,混合和分布产生重大影响。 (C)2019 Elsevier Masson SAS。版权所有。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号