...
首页> 外文期刊>Aerospace science and technology >Investigation of shock wave control by suction in a supersonic cascade
【24h】

Investigation of shock wave control by suction in a supersonic cascade

机译:超音速级联吸力冲击波控制研究

获取原文
获取原文并翻译 | 示例
           

摘要

The numerical simulation of suction control on a supersonic cascade is presented in this paper. The purpose of this study is to enhance the resistance backpressure characteristics of a flow field by suction control and demonstrate the evolution of shock structures and parameter distributions in the flow field controlled by suction. The study is based on the SAV21 supersonic cascade designed by the German Aerospace Centre and operated under an incoming Mach number of 2.4 and a flow turning angle of 45 degrees. The three-dimensional Reynolds-averaged Navier-Stokes (RANS) equations in a Cartesian coordinate system are successfully applied to the cascade flow. The two-equation shear-stress transport (SST) k-omega turbulence model of Menter is employed to model the turbulent velocity profile. The results show that when the backpressure is greater than the critical backpressure, the shock train leading edge crosses the throat, causing a decrease in the mass-capturing coefficient and the occurrence of stall. To control supersonic cascade by suction, the most effective location is at the interaction of the shock train leading edge and the suction surface boundary layer. By applying suction control at the key position, the shock train is stabilized at the downstream boundary of the suction slot with a small loss of suction mass flow. At mild backpressure ratio range, the increased backpressure is compensated by the local enhanced barrier wave. By increasing the pressure gradient downstream of the barrier wave, the maximum backpressure is improved by suction control. By using the improved combined suction scheme with one spanwise slot on the suction surface and one streamwise slot on the endwall, the maximum backpressure can be improved by 20% under a suction mass flow of 8% of the capture mass. (C) 2020 Elsevier Masson SAS. All rights reserved.
机译:本文提出了超声级级级级级级级级级级级级级级级级的数值模拟。本研究的目的是通过抽吸控制提高流场的电阻背压特性,并演示吸力控制的流场中的冲击结构和参数分布的演变。该研究基于德国航空航天中心设计的Sav21超音速级联,并在2.4的进入马赫数和45度的流量转角操作。笛卡尔坐标系中的三维雷诺平均Navier-Stokes(RANS)方程成功应用于级联流。使用的等式剪切应力输送(SST)k-Omega湍流模型用于模拟湍流速度曲线。结果表明,当背压大于关键背压时,冲击火车前沿穿过喉部,导致批量捕获系数的减少和失速的发生。为了通过抽吸控制超音速级联,最有效的位置处于冲击列车前缘和吸入表面边界层的相互作用。通过在键位置施加抽吸控制,冲击火车在吸入槽的下游边界处稳定,具有小的吸入质量流量。在温和的背压比范围内,通过局部增强的阻挡波来补偿增加的背压。通过增加阻挡波下游的压力梯度,通过抽吸控制提高了最大背压。通过使用在抽吸表面上的一个血管槽的改进的组合抽吸方案和端部上的一个流动槽,在捕获质量的8%的吸气流量下可以提高20%的最大背压。 (c)2020 Elsevier Masson SAS。版权所有。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号