...
首页> 外文期刊>Aerospace science and technology >A strategy to decelerate and capture a spinning object by a dual-arm space robot
【24h】

A strategy to decelerate and capture a spinning object by a dual-arm space robot

机译:通过双臂空间机器人减速和捕获旋转物体的策略

获取原文
获取原文并翻译 | 示例
           

摘要

With the increasing requirement of grasping the non-cooperative objects in space by space robots, this paper introduces a new strategy operated by a dual-arm space robot. The strategy includes path planning to capture a spinning target, hybrid control of the motion and the contact force for the end-effectors, coordinated control of the base attitude, and parameter identification of the spinning target during the capture phase. Notably, a pair of proper contact forces can be applied to the two grasp points of the spinning target by the two manipulators, which can decelerate the spinning speed of the target and be utilized to identify the target's moment of inertia around its spinning axis. Considering the noncooperative situation with the spinning target like a defunct satellite, the uncertainties of the space robot and the target, such as parameters of mass and moment of inertia, are concerned in the design of the Sliding Mode Controller (SMC) with good robustness. Moreover, due to the coupling movement of the base and arms of a dual-arm space robot, the base attitude will be simultaneously maintained by the mounted reaction wheels during the capture operation for good communications and effective solar energy collection. The post-capture process is also presented in the paper to bring the entire system of the space robot and the target into stationary status. To compare the system performance against the uncertainties by different controllers, PID-type Computed Torque Controller (CTC) and SMC are designed together for comparison. When the uncertainties of the mass and the moment of inertia are applied to the system, the simulation results show that SMC has better performance against the uncertainties by delivering higher accuracy of the tracking errors to the desired trajectories than CTC. (C) 2021 Elsevier Masson SAS. All rights reserved.
机译:与由空间机器人把持在空间中的非合作的对象的要求越来越高,本文介绍了一种新的策略,由双臂空间机器人操作。该策略包括路径规划在捕获阶段捕获纺丝目标,运动的混合动力控制和末端效应,基座姿态的协调控制的接触力,纺丝目标的参数识别。值得注意的是,一对适当的接触力可以通过两个操纵器,其可减速目标的纺丝速度和被用于识别围绕其纺丝轴的惯性目标的力矩被施加到纺丝目标的两个把握分。考虑到与纺纱目标像一个倒闭的卫星不合作的情况下,空间机器人和目标的不确定性,如质量和转动惯量的参数,担心在滑模控制器(SMC)具有良好的鲁棒性设计。而且,由于基部和双臂空间机器人的臂的联接运动,基座姿态将同时保持由良好的通信和有效的太阳能收集捕获操作过程中所安装的反作用轮。在捕获后处理也呈现于纸张带来的空间机器人的整个系统和目标为静止状态。来比较由不同的控制器中的不确定性的系统的性能,PID类型计算转矩控制器(CTC)和SMC被设计一起进行比较。当质量和转动惯量的不确定性被应用到系统中,仿真结果表明,SMC具有对抗比CTC所需交付的轨迹跟踪误差的精度更高的不确定性更好的性能。 (c)2021 Elsevier Masson SAS。版权所有。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号