...
首页> 外文期刊>Aerospace science and technology >In-plane compression behaviors of the auxetic star honeycomb: Experimental and numerical simulation
【24h】

In-plane compression behaviors of the auxetic star honeycomb: Experimental and numerical simulation

机译:辅助星蜂窝的面内压缩行为:实验和数值模拟

获取原文
获取原文并翻译 | 示例
           

摘要

In this study, two types of star honeycombs with different cell-wall angles were fabricated by additive manufacturing technology for in-plane compression tests. Experiment results show that the cell-wall angle has no evident effect on the deformation modes, but the small cell-wall angle can improve the energy absorption capacity of star honeycombs. In addition, the unilateral horizontal maximum strain (UHMS) is proposed to evaluate the deformation stability of the honeycomb. Subsequently, numerical simulations are conducted to further investigate the influences of macro and micro geometric parameters on the in-plane compression behavior of star honeycombs. The results show that reducing the orthogonal array ratio and length of the ligament can significantly enhance the deformation stability and energy absorption capacity. Moreover, in accordance with the deformation mechanisms of a typical cell, a theoretical model is established to predict the plateau stress of star honeycomb under quasi-static loading. The theoretical results are in good agreement with the simulation results. Finally, three types of improved star honeycombs (ISH) are constructed by adjusting the ligament length, which improved the specific energy absorption by 30% compared with the classic star honeycomb. Besides, the ISH-II exhibits a stable deformation mode with a significant NPR effect. The results are expected to provide references for designing and optimizing the star honeycomb structure. (C) 2021 Elsevier Masson SAS. All rights reserved.
机译:在本研究中,通过添加到面内压缩测试的添加制造技术制造了两种类型的星形蜂窝状,用于面内压缩试验。实验结果表明,电池壁角对变形模式没有明显影响,但小型电池壁角可以提高星蜂窝的能量吸收能力。此外,提出了单侧水平最大应变(UHMS)来评估蜂窝的变形稳定性。随后,进行数值模拟以进一步研究宏观和微观几何参数对星形蜂窝的平面压缩行为的影响。结果表明,降低韧带的正交阵列比和长度可以显着提高变形稳定性和能量吸收能力。此外,根据典型电池的变形机制,建立了理论模型,以预测准静态载荷下星蜂窝的高原应力。理论结果与模拟结果吻合良好。最后,通过调节韧带长度来构建三种改进的星形蜂窝状(ISH),与经典的星蜂窝相比,将特定能量吸收提高了30%。此外,ISH-II表现出稳定的变形模式,具有显着的NPR效应。结果预计将提供用于设计和优化星蜂窝结构的参考。 (c)2021 Elsevier Masson SAS。版权所有。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号