...
首页> 外文期刊>Aerospace science and technology >A 6-DOF sliding mode fault tolerant control solution for in-orbit autonomous rendezvous
【24h】

A 6-DOF sliding mode fault tolerant control solution for in-orbit autonomous rendezvous

机译:一个6-DOF滑动模式容错控制解决方案,用于轨道自主集合

获取原文
获取原文并翻译 | 示例
           

摘要

The goal pursued by this article, is to evaluate the potential of sliding-mode control and estimation techniques, to address fault tolerance against a large class of actuator faults, including loss of controllability of the faulty actuator, for autonomous rendezvous between a chaser spacecraft and a passive spacecraft on a circular orbit. The proposed solution is based on the dual quaternion formalism, to describe in a single equation, rotational and translational spacecraft dynamics, solar array flexible modes, propellant sloshing, the most dimensioning space disturbances, and their coupling. Such a modelling formalism enables to propose a six degree-of-freedom fault tolerant control architecture, which relies on the generalized super-twisting control algorithm nested with a nonlinear fault estimator. An anti windup strategy based on polytope algebra is applied to the control algorithm, to prevent instability due to actuator saturation when faults occur. Asymptotic stability of the proposed fault-tolerant control scheme is formally proved with respect to a wide variety of faults, providing that the first derivatives of the fault estimation error versus time and the sliding surface, are bounded. Intensive simulations from a functional engineering simulator that accurately simulates the rendezvous mission, are presented in the paper, as well as capture-oriented criteria. The presented results demonstrate that the proposed fault tolerant solution is able to cover any kind of thruster faults, including total loss of controllability of the faulty thruster, as well as solar array flexible modes, propellant sloshing, gravity gradient, the second zonal harmonic, atmospheric drag and magnetic disturbances. (C) 2021 Elsevier Masson SAS. All rights reserved.
机译:本文追求的目标是评估滑模控制和估计技术的潜力,以解决对大型执行器故障的容错,包括故障执行器的可控性损失,用于追踪航天器之间的自主集合在圆形轨道上的被动宇宙飞船。所提出的解决方案基于双季度形式主义,以描述单个方程,旋转和平移航天器动力学,太阳能阵列柔性模式,推进剂晃动,最尺寸的空间障碍,以及它们的耦合。这种建模形式主义能够提出六种自由度的容错控制架构,其依赖于嵌套的广义超扭转控制算法嵌套在非线性故障估计器中。基于Polytope代数的抗卷绕策略应用于控制算法,以防止由于发生故障时的致动器饱和而不稳定。相对于各种故障,正式证明了所提出的容错控制方案的渐近稳定性,提供了故障估计误差与时间和滑动表面的第一个衍生物。从功能工程模拟器的密集仿真,准确模拟了共同特派团的纸张,以及面向捕获的标准。所呈现的结果表明,所提出的容错解决方案能够涵盖任何类型的推进器断层,包括故障推进器的可控性的总损失,以及太阳能阵列柔性模式,推进剂晃动,重力梯度,第二个谐波,大气拖动和磁干扰。 (c)2021 Elsevier Masson SAS。版权所有。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号