...
首页> 外文期刊>Aerospace science and technology >Numerical and experimental flight verifications of a calibration matrix approach for load monitoring and temperature reconstruction and compensation
【24h】

Numerical and experimental flight verifications of a calibration matrix approach for load monitoring and temperature reconstruction and compensation

机译:负荷监测和温度重建和补偿校准矩阵方法的数值和实验飞行验证

获取原文
获取原文并翻译 | 示例
           

摘要

Mechanical and aeronautical structures could experience unexpected loads during operations, potentially reducing their operability. A load monitoring system enables one to recover the actual load spectra of the component and track its aging continuously. However, complex loading can be difficult to be identified, as for complex aerodynamic loads due to operational maneuvers in aeronautical structures, especially when environmental conditions vary.This work proposes a method for recovering the full strain and displacement fields in the entire structure, leveraging on the Calibration Matrix approach and an equivalent set of lumped forces, including the thermal variation among the unknown parameters. A least-squares minimization of an error functional defined as a comparison between measured and numerical strain is exploited for load and temperature reconstruction, automatically compensating thermal effects on the strain measurements without requiring any training data sets. By assuming a linear relationship between strain and the unknowns through a calibration matrix, the minimization can be performed analytically offline, resulting in a computationally very efficient algorithm that can be operated in real-time at a reduced computational burden.Though the mathematical formulation is general for any arbitrary component geometry and loading condition, the method is tested with a full-scale Unmanned Aerial Vehicle (UAV) undergoing different operational maneuvers, both numerically and with actual flight tests. The results confirm the robustness of the method to real environmental disturbances, correctly reconstructing the strain and displacement fields due to aerodynamic loads through triangular equivalent forces and automatically adapting to different load scenarios and temperature changes. (C) 2021 Elsevier Masson SAS. All rights reserved.
机译:机械和航空结构可能在操作期间体验意外的负载,可能降低其可操作性。负载监控系统使一个人能够恢复组件的实际负载光谱并连续跟踪其老化。然而,可以难以识别复杂的加载,因为由于航空结构中的操作演用,尤其是当环境条件变化时的复杂空气动力学载荷。本工作提出了一种用于在整个结构中恢复完全应变和位移场的方法,利用校准矩阵方法和等同的一组集成力,包括未知参数之间的热变化。利用作为测量和数值应变之间的比较最小的最小平方,以用于负载和温度重建,自动补偿应变测量的热效应而不需要任何训练数据集。通过假设应变与未知通过校准矩阵之间的线性关系,可以在分析离线中进行最小化,从而产生计算非常有效的算法,可以在减少的计算负担中实时运行。虽然数学制定是一般的对于任何任意组件几何和装载条件,该方法用全面无人驾驶飞行器(UAV)进行了在数值和实际飞行试验中进行了不同的操作动作。结果证实了该方法对真实环境干扰的鲁棒性,通过三角等效力来正确地重建由于空气动力学负载,并自动适应不同的负载场景和温度变化。 (c)2021 Elsevier Masson SAS。版权所有。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号