...
首页> 外文期刊>AIAA Journal >Design and Scaling of Plasma Streamwise Vortex Generators for Flow Separation Control
【24h】

Design and Scaling of Plasma Streamwise Vortex Generators for Flow Separation Control

机译:用于流分离控制的等离子流涡旋发生器的设计和定标

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The design and scaling of plasma streamwise vortex generators in a variable pressure gradient environment are presented. This involves measurements in the boundary layer on the suction surface of a V-22 wing model which provided a generic flowfield that undergoes trailing-edge flow separation as a precursor to lift stall. Experiments were performed at freestream Mach numbers from 0.1 to 0.2, which resulted in chord Reynolds numbers of 0.7 x 10(6) to 1.6 x 10(6). Different streamwise pressure gradients were examined by changing the airfoil angle of attack. Three components of the mean velocity in the boundary layer on the suction side of the wing model were measured using a five-hole pitot probe. These measurements were used to quantify the plasma streamwise vortex generator generated mean streamwise vorticity and the magnitude of the vorticity reorientation term in the vorticity transport equation that was used in the scaling analysis of the plasma streamwise vortex generator performance. The results validate the prediction of the streamwise vorticity production associated with the reorientation of the boundary-layer mean vorticity to scale as (L/delta*) (U-p/U-c) (Delta U/lambda), where L is the streamwise length of the plasma streamwise vortex generator array, U-p is the external velocity at the crest of the airfoil, U-c is the characteristic mean velocity of the flow over the plasma streamwise vortex generator array, Delta U is the change in the streamwise velocity produced by the plasma actuator, and lambda is the spanwise spacing between the plasma streamwise vortex generator electrodes. The criteria for L is that the convective timescale T-c = L/U-infinity be greater than the timescale for vorticity reorientation in the boundary layer, namely, T-c >= (partial derivative(U) over bar/partial derivative z)(-1). Both the plasma streamwise vortex generator generated. partial derivative(U) over bar/partial derivative z and. partial derivative(V) over bar/partial derivative z similar to omega(x) were found to scale with T-c. An optimally scaled plasma streamwise vortex generator array on the V-22 wing model produced as much as a 40 point drag count reduction at poststall angles of attack.
机译:介绍了在可变压力梯度环境下等离子流涡旋发生器的设计和定标。这涉及在V-22机翼模型的吸力表面上的边界层中进行的测量,该模型提供了通用流场,该流场经过后缘流分离作为提升失速的先兆。在自由马赫数从0.1到0.2的条件下进行实验,结果雷诺数为0.7 x 10(6)到1.6 x 10(6)。通过改变翼型迎角来检查不同的沿流方向的压力梯度。使用五孔皮托管探头测量机翼模型吸力侧边界层中平均速度的三个分量。这些测量值用于量化等离子流涡旋发生器产生的平均流向涡度和涡度输运方程式中涡度重新定向项的大小,该方程用于等离子流涡旋发生器性能的定标分析。结果验证了与边界层平均涡度重新定标相关的流向涡度产生的预测,缩放比例为(L / delta *)(Up / Uc)(Delta U / lambda),其中L是流向涡旋长度等离子流涡流发生器阵列,Up是翼型波峰处的外部速度,Uc是等离子流涡流发生器阵列上特征流的平均速度,Delta U是等离子致动器产生的流向速度的变化, λ是等离子体流涡旋发生器电极之间的翼展方向间隔。 L的标准是对流时间尺度Tc = L / U-infinity大于边界层中涡旋重新定向的时间尺度,即Tc> =(bar /偏导数z上的偏导数(U))(-1 )。两者均产生等离子体流涡流发生器。 bar /偏导数z和上的偏导数(U)。发现类似于omega(x)的bar /偏导数z上的偏导数(V)与T-c成比例。在V-22机翼模型上,最优比例的等离子流向涡流发生器阵列在失速后攻角处产生了多达40点的阻力减少。

著录项

  • 来源
    《AIAA Journal》 |2016年第11期|3397-3408|共12页
  • 作者单位

    Univ Notre Dame, Hessert Lab B022, Aerosp & Mech Engn, Notre Dame, IN 46556 USA;

    Univ Notre Dame, Hessert Lab, Aerosp & Mech Engn, Notre Dame, IN 46556 USA;

    Univ Notre Dame, Hessert Lab, Aerosp & Mech Engn, Notre Dame, IN 46556 USA;

    Innovat Technol Applicat Co LLC, Chesterfield, MO 63017 USA;

    Innovat Technol Applicat Co LLC, Chesterfield, MO 63017 USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号