...
首页> 外文期刊>American journal of engineering and applied sciences >Dynamic simulation and optimum operation strategy of a trigeneration system serving a hospital
【24h】

Dynamic simulation and optimum operation strategy of a trigeneration system serving a hospital

机译:服务于医院的三代发电系统的动态仿真和最佳运行策略

获取原文
获取原文并翻译 | 示例
           

摘要

This paper presents a numerical analysis of a trigeneration system in a hospital, aiming at determining the cost-optimal operating strategy as a function of the energy demands to be matched. The system includes: A natural gas fired reciprocating engine, heat exchangers for waste-heat recovery, a single-stage LiBr-H2O Absorption Chiller (ACH), a cooling tower, pumps, a backup boiler, a backup vapour-compression electric chiller, storage tanks, valves, mixers. For such system, a dynamic simulation model was developed in TRNSYS environment; the model includes detailed algorithms for all the components of the system. A case study was developed, referred to a hospital application, in which a Combined Heat, Cooling and Power (CHCP) system provides electricity, thermal and cooling energy. The electric energy demand was obtained by using real measured data and calibrating hospital literature data, whereas the demand for heating and cooling was estimated by means of a detailed simulation model. A detailed economic analysis was also included in the model, aiming at investigating the optimal control strategy needed to maximize the overall thermo economic performance of the system. To this scope, different control strategies were analysed. The most conventional operating strategy, Thermal Load Tracking mode (TLT), was compared with two alternative strategies: The Maximum Power Thermal Load Tracking mode (MPTLT) and the Electricity Load Tracking mode (ELT). MPTLT is a strategy featured by a thermal load tracking mode, but the engine, differently from TLT one, operates always at maximum power. ELT is a strategy in which the power provided by the engine is always less or equal to the electrical demand. In the paper, the results of the case study are presented on different time bases (days, weeks, years). Such results show that the ELT control strategy can achieve a better profitability, with a simple pay-back period, SPB, equal to 4 years. The conventional strategy (TLT) is shown to be the worst from the economic point of view, but among the best as for energy saving potential.
机译:本文对医院的三联发电系统进行了数值分析,旨在确定成本最佳的运营策略,作为要匹配的能源需求的函数。该系统包括:天然气往复式发动机,用于废热回收的热交换器,单级LiBr-H2O吸收式制冷机(ACH),冷却塔,泵,备用锅炉,备用蒸气压缩式电制冷机,储罐,阀门,混合器。对于这样的系统,在TRNSYS环境中开发了动态仿真模型。该模型包括针对系统所有组件的详细算法。已开发了一个案例研究,并参考了医院的应用程序,在该案例中,热,冷和电(CHCP)组合系统提供了电,热和冷却能。通过使用实际测量数据和校准医院文献数据获得电能需求,而通过详细的仿真模型估算加热和冷却需求。该模型还包括详细的经济分析,旨在研究使系统的整体热经济性能最大化所需的最佳控制策略。在此范围内,分析了不同的控制策略。比较了最传统的操作策略,即热负荷跟踪模式(TLT)和两种替代策略:最大功率热负荷跟踪模式(MPTLT)和电负荷跟踪模式(ELT)。 MPTLT是一种具有热负荷跟踪模式的策略,但是与TLT不同,该发动机始终以最大功率运行。 ELT是一种策略,其中发动机提供的功率始终小于或等于电力需求。在本文中,案例研究的结果以不同的时间基准(天,周,年)呈现。这样的结果表明,ELT控制策略可以实现更好的获利能力,其简单的投资回收期SPB等于4年。从经济角度看,传统策略(TLT)被证明是最差的,但就节能潜力而言,它却是最好的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号