...
首页> 外文期刊>Annals of nuclear energy >Adapting the deep burn in-core fuel management strategy for the gas turbine - modular helium reactor to a uranium-thorium fuel
【24h】

Adapting the deep burn in-core fuel management strategy for the gas turbine - modular helium reactor to a uranium-thorium fuel

机译:调整燃气轮机的深度燃烧堆芯燃料管理策略-模块化氦反应堆以使用铀-燃料

获取原文
获取原文并翻译 | 示例
           

摘要

In 1966, Philadelphia Electric has put into operation the Peach Bottom I nuclear reactor, it was the first high temperature gas reactor (HTGR); the pioneering of the helium-cooled and graphite-moderated power reactors continued with the Fort St. Vrain and THTR reactors, which operated until 1989. The experience on HTGRs lead General Atomics to design the gas turbine - modular helium reactor (GT-MHR), which adapts the previous HTGRs to the generation IV of nuclear reactors. One of the major benefits of the GT-MHR is the ability to work on the most different types of fuels: light water reactors waste, military plutonium, MOX and thorium. In this work, we focused on the last type of fuel and we propose a mixture of 40% thorium and 60% uranium. In a uranium-thorium fuel, three fissile isotopes mainly sustain the criticality of the reactor: ~(235)U, which represents the 20% of the fresh uranium, ~(233)U, which is produced by the transmutation of fertile ~(232)Th, and ~(239)Pu, which is produced by the transmutation of fertile ~(238)U. In order to compensate the depletion of ~(235)U with the breeding of ~(233)U and ~(239)Pu, the quantity of fertile nuclides must be much larger than that one of ~(235)U because of the small capture cross-section of the fertile nuclides, in the thermal neutron energy range, compared to that one of ~(235)U. At the same time, the amount of ~(235)U must be large enough to set the criticality condition of the reactor. The simultaneous satisfaction of the two above constrains induces the necessity to load the reactor with a huge mass of fuel; that is accomplished by equipping the fuel pins with the JAERI TRISO particles. We start the operation of the reactor with loading fresh fuel into all the three rings of the GT-MHR and after 810 days we initiate a refueling and shuffling schedule that, in 9 irradiation periods, approaches the equilibrium of the fuel composition. The analysis of the k_(eff) and mass evolution, reaction rates, neutron flux and spectrum at the equilibrium of the fuel composition, highlights the features of a deep burn in-core fuel management strategy for a uranium-thorium fuel.
机译:1966年,费城电力公司将桃子底部I核反应堆投入运行,这是第一座高温气体反应堆(HTGR);直到1989年运行的St. Vrain堡和THTR堆都是氦冷却和石墨慢化功率反应堆的先驱。HTGR的经验使General Atomics设计了燃气轮机-模块化氦反应堆(GT-MHR) ,它使以前的高温气冷堆适应了第四代核反应堆。 GT-MHR的主要优点之一是能够使用最不同类型的燃料:轻水反应堆废料,军用p,MOX和or。在这项工作中,我们专注于最后一种燃料,并提出了40%th和60%铀的混合物。在铀-fuel燃料中,三个裂变同位素主要维持反应堆的临界状态:〜(235)U,代表新鲜铀〜(233)U的20%,这是通过可育〜(〜)的trans变产生的232)Th和〜(239)Pu,这是由可育的〜(238)U的trans变产生的。为了通过〜(233)U和〜(239)Pu的繁殖来补偿〜(235)U的耗竭,可育核素的数量必须比〜(235)U的数量大得多,因为它很小与〜(235)U中的一个相比,在热中子能量范围内捕获可育核素的横截面。同时,〜(235)U的量必须足够大以设置反应堆的临界条件。上述两个约束的同时满足导致需要给反应堆装载大量燃料。这是通过在加油杆上安装JAERI TRISO颗粒来实现的。我们通过将新鲜燃料装入GT-MHR的所有三个环中来开始反应堆的运行,并在810天后启动加油和改组计划,该计划在9个辐照时间段内接近燃料成分的平衡。对燃料成分平衡时的k_(eff)和质量演化,反应速率,中子通量和光谱的分析突出了铀-燃料的深燃烧核内燃料管理策略的特征。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号