首页> 外文期刊>Applied Acoustics >Influence of a shift in frequency distribution and analysis rate on phoneme intelligibility in noisy environments for simulated bilateral cochlear implants
【24h】

Influence of a shift in frequency distribution and analysis rate on phoneme intelligibility in noisy environments for simulated bilateral cochlear implants

机译:频率分布和分析速率的变化对模拟双侧人工耳蜗在嘈杂环境中音素清晰度的影响

获取原文
获取原文并翻译 | 示例
           

摘要

A model was developed to simulate acoustically sound perception through a cochlear implant (Cl), in order to evaluate the effects of a spectral shift and analysis rate on speech recognition in quiet and noise. In the current study, we considered two analysis rates, 250 Hz and 500 Hz, and two CI modes: Symmetric Bilateral Cochlear Implant (SBCI) and Shifted Bilateral Cochlear Implant (ShBCI). Processing and coding strategies used in this model were adapted from the Digisonic SP Cl, manufactured by Neurelec. Intelligibility of speech signals processed to simulate different analysis rates and CI modes were assessed by a group of fifty normal-hearing subjects. The analysis rate was simulated by varying the overlap between successive analysis frames using a narrow band vocoder. With the SBCI mode, both ears were stimulated with the same signal (the same frequency filters were used). With the ShBCI mode, the filters were shifted in frequency (between the two ears). All the conditions were tested in quiet and in noisy environment with three different Signals to Noise Ratios (SNR). The database testing procedure used in this experimentation involved 3-phoneme words selected from the French Lafon's lists. Speech signals were corrupted by addition of speech multi-talker babble noise. Results showed a significant effect of CI mode, of analysis rate and of SNR. The analysis rate effect was small in quiet and significant in noisy environments. The 500 Hz analysis rate led to better performances than the 250 Hz. Higher performances were also observed with the ShBCI mode in noisy environments. Results were mainly consistent with findings obtained from previous cochlear implant studies which suggest that CI users may perform better with a shifted bilateral stimulation in noisy environments, and with a higher analysis rate.
机译:开发了一个模型来模拟通过人工耳蜗(Cl)进行的声音感知,以便评估频谱偏移和分析速率对安静和噪音下语音识别的影响。在当前的研究中,我们考虑了两种分析速率250 Hz和500 Hz,以及两种CI模式:对称双侧人工耳蜗(SBCI)和移位双侧人工耳蜗(ShBCI)。该模型中使用的处理和编码策略改编自Neurelec制造的Digisonic SP Cl。由一组五十名听力正常的受试者评估了处理为模拟不同分析率和CI模式的语音信号的清晰度。通过使用窄带声码器改变连续分析帧之间的重叠来模拟分析速率。在SBCI模式下,两只耳朵都受到相同信号的刺激(使用了相同的频率滤波器)。在ShBCI模式下,滤波器的频率发生了变化(在两只耳朵之间)。所有条件均在安静且嘈杂的环境中使用三种不同的信噪比(SNR)进行了测试。本实验中使用的数据库测试程序涉及从法语Lafon列表中选择的3个音素词。语音信号由于添加了语音多说话者的胡言乱语而损坏。结果显示CI模式,分析速率和SNR都有显着影响。在安静的环境中,分析速度的影响很小,而在嘈杂的环境中,分析速度的影响却很大。 500 Hz的分析速率比250 Hz的性能更好。在嘈杂的环境中,使用ShBCI模式还可以观察到更高的性能。结果主要与先前的人工耳蜗研究所得的结果一致,这些研究表明CI用户在嘈杂的环境中,如果双侧刺激发生偏移,其表现可能更好,分析率也更高。

著录项

  • 来源
    《Applied Acoustics》 |2013年第1期|10-17|共8页
  • 作者单位

    Research Unit in Advanced Technologies for Medicine and Signals 'ATMS', National Engineering School of Sfax, University of Sfax, Route Soukra, km 3, Sfax, BPW 3038, Tunisia,PACS Team, INSERM Unit 1028: 'Cognition and Brain Dynamics', Lyon Neurosciences Research Centre, EPU-ISTIL, Claude Bernard University, Boulevard du 11 Novembre 1918,69622 Villeurbanne, France;

    PACS Team, INSERM Unit 1028: 'Cognition and Brain Dynamics', Lyon Neurosciences Research Centre, EPU-ISTIL, Claude Bernard University, Boulevard du 11 Novembre 1918,69622 Villeurbanne, France;

    Research Unit in Advanced Technologies for Medicine and Signals 'ATMS', National Engineering School of Sfax, University of Sfax, Route Soukra, km 3, Sfax, BPW 3038, Tunisia;

    PACS Team, INSERM Unit 1028: 'Cognition and Brain Dynamics', Lyon Neurosciences Research Centre, EPU-ISTIL, Claude Bernard University, Boulevard du 11 Novembre 1918,69622 Villeurbanne, France;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    bilateral CI stimulation; analysis rate; vocoder; hearing in noise; asymmetrical stimulation;

    机译:双侧CI刺激;分析率声码器听到噪音;不对称刺激;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号