...
首页> 外文期刊>Applied Energy >The potential of direct steam cracker electrification and carbon capture & utilization via oxidative coupling of methane as decarbonization strategies for ethylene production
【24h】

The potential of direct steam cracker electrification and carbon capture & utilization via oxidative coupling of methane as decarbonization strategies for ethylene production

机译:通过甲烷氧化偶联作为乙烯生产脱碳策略的氧化偶联和碳捕获和利用的潜力

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Ethylene is one of the most important building blocks in the chemical industry, making its decarbonization a natural starting point for achieving emission targets of the industrial sector. We here present an in-depth analysis of carbon and energy flows of two main strategies that could potentially reduce emissions from ethylene production: (i) direct electrification of heat supply in the traditional steam cracking process and (ii) indirect electrification through a novel production route based on Power-to-Gas and Oxidative Coupling of Methane (OCM-PtG). By calculating carbon footprints of all processes as a function of electricity carbon intensity, we show that fueling the steam cracker with renewable electricity can achieve a maximal emission reduction of 30% while OCM-PtG can achieve a net-zero emission production process if electricity supply is completely decarbonized and resulting products are at least partially recycled at the end of their life cycle. An integrated analysis within an economy-wide, global climate policy scenario shows that these conditions are likely to be met only after 2030 even under very stringent climate policy in line with the climate targets of the Paris agreement. If not met, OCM-PtG can actually increase the carbon footprint of ethylene. We also show that OCM-PtG is currently not cost-competitive, but can become so under suitable boundary conditions. It becomes clear that policy instruments that support the market introduction of carbon capture utilization technologies like OCM-PtG are only justified, if conditions are ensured that enable a positive mitigation potential over their life cycle.
机译:乙烯是化学工业中最重要的建筑砌块之一,使其脱碳是实现工业部门排放目标的自然起点。我们在这里提出了两种主要策略的碳和能量流动的深入分析,这可能会降低乙烯生产的排放:(i)传统蒸汽开裂过程中热供应的直接电气化和(ii)通过新颖的生产间接电气化基于甲烷(OCM-PTG)的功率到气体和氧化偶联的途径。通过计算所有工艺的碳足迹作为电碳强度的函数,我们表明,蒸汽裂解器的可再生电力可以实现30%的最大排放减少,而OCM-PTG如果电力供应,可以实现网络零排放生产过程。是完全脱碳的,并且产生的产品在生命周期结束时至少部分地回收。在经济范围内,全球气候政策情景中的综合分析表明,即使在2030年之后,即使在非常严格的气候政策中,这些条件也仅在符合巴黎协定的气候目标。如果没有满足,OCM-PTG实际上可以增加乙烯的碳足迹。我们还表明OCM-PTG目前没有成本竞争,但在合适的边界条件下可能变得如此。很明显,支持市场推出碳捕获利用技术等碳捕获利用技术的政策仪器仅是合理的,如果确保条件能够在生命周期中实现积极缓解潜力。

著录项

  • 来源
    《Applied Energy》 |2021年第15期|117049.1-117049.13|共13页
  • 作者单位

    Potsdam Inst Climate Impact Res Telegraphenberg A 31 D-14473 Potsdam Germany|Tech Univ Berlin Fac Proc Engn Proc Dynam & Operat Grp Sekretariat KWT 9 Str 17 Juni 135 D-10623 Berlin Germany|Tech Univ Berlin Fac Proc Engn Sustainable Engn Grp Str 17 Juni 135 D-10623 Berlin Germany;

    Tech Univ Berlin Fac Proc Engn Sustainable Engn Grp Str 17 Juni 135 D-10623 Berlin Germany;

    Tech Univ Berlin Fac Proc Engn Sustainable Engn Grp Str 17 Juni 135 D-10623 Berlin Germany;

    Potsdam Inst Climate Impact Res Telegraphenberg A 31 D-14473 Potsdam Germany;

    Tech Univ Berlin Fac Proc Engn Proc Dynam & Operat Grp Sekretariat KWT 9 Str 17 Juni 135 D-10623 Berlin Germany;

    Potsdam Inst Climate Impact Res Telegraphenberg A 31 D-14473 Potsdam Germany;

    Tech Univ Berlin Fac Proc Engn Proc Dynam & Operat Grp Sekretariat KWT 9 Str 17 Juni 135 D-10623 Berlin Germany;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Industry decarbonization; Carbon capture and utilization (CCU); Power-to-Gas; Steam cracking; Oxidative Coupling of Methane; Carbon footprint;

    机译:行业脱碳;碳捕获和利用(CCU);能量到气体;蒸汽开裂;甲烷的氧化偶联;碳足迹;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号