...
首页> 外文期刊>Applied Energy >Dynamic frequency response from electric vehicles considering travelling behavior in the Great Britain power system
【24h】

Dynamic frequency response from electric vehicles considering travelling behavior in the Great Britain power system

机译:考虑英国电力系统行驶行为的电动汽车动态频率响应

获取原文
获取原文并翻译 | 示例
           

摘要

In order to pursue the low-carbon development around the world, a large scale of renewable generation will be connected to the power systems. Take the Great Britain (GB) as an example, the GB power system has a large wind energy integration potential. The intermittency of wind generation will have great impact on the system frequency stability. Electric vehicles (EVs) have a crucial role in decarbonizing the transport sector. To increase the utilization of wind energy, EVs are suggested to provide frequency response service to the power system due to their quick power reaction characteristic. This paper proposes a general dynamic EV frequency control strategy considering the travelling behavior of the EV users. A droop control method is used to regulate the EV charging/discharging power according to the frequency signal. A Forced-Charge Boundary (FCB) and a Forced-Charge Area (FCA) are proposed to guarantee sufficient energy in the EV battery for user's travel at the plug-out time. A dynamic Virtual Energy Storage System (VESS) is developed to evaluate the frequency response capacity of the EV clusters. In the case study, the model of the GB power system is used to investigate the frequency control effect of the control strategy. The simulation results show that the proposed strategy provides effective EV frequency response to the power system and thus is able to facilitate the integration of wind energy. (C) 2015 Elsevier Ltd. All rights reserved.
机译:为了在世界范围内追求低碳发展,电力系统将连接大规模的可再生能源发电。以英国为例,GB电力系统具有巨大的风能整合潜力。风力的间歇性将对系统的频率稳定性产生很大的影响。电动汽车(EV)在降低交通运输部门的碳排放量方面具有至关重要的作用。为了提高对风能的利用,电动汽车因其快速的动力反应特性,被建议为电力系统提供频率响应服务。考虑到电动汽车用户的出行行为,本文提出了一种通用的动态电动汽车频率控制策略。下垂控制方法用于根据频率信号调节电动汽车的充电/放电功率。提出了强制充电边界(FCB)和强制充电区域(FCA),以确保EV电池中足够的能量供用户在插拔时行驶。开发了动态虚拟能源存储系统(VESS)来评估电动汽车集群的频率响应能力。在案例研究中,使用GB电力系统的模型来研究控制策略的频率控制效果。仿真结果表明,所提出的策略为电力系统提供了有效的电动汽车频率响应,因此能够促进风能的整合。 (C)2015 Elsevier Ltd.保留所有权利。

著录项

  • 来源
    《Applied Energy》 |2016年第15期|966-979|共14页
  • 作者单位

    Tianjin Univ, Minist Educ, Key Lab Smart Grid, Tianjin 300072, Peoples R China;

    Tianjin Univ, Minist Educ, Key Lab Smart Grid, Tianjin 300072, Peoples R China;

    Tianjin Univ, Minist Educ, Key Lab Smart Grid, Tianjin 300072, Peoples R China;

    Cardiff Univ, Sch Engn, Inst Energy, Cardiff CF24 3AA, S Glam, Wales;

    Tianjin Univ, Minist Educ, Key Lab Smart Grid, Tianjin 300072, Peoples R China;

    Tianjin Univ, Minist Educ, Key Lab Smart Grid, Tianjin 300072, Peoples R China|China Elect Power Res Inst, Beijing 100192, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Electrical vehicle; Frequency response; Wind energy; Travelling behavior;

    机译:电动汽车;频率响应;风能;行驶行为;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号