...
首页> 外文期刊>Applied Energy >Numerical analysis of the optimum membrane/ionomer water content of PEMFCs: The interaction of Nafion (R) ionomer content and cathode relative humidity
【24h】

Numerical analysis of the optimum membrane/ionomer water content of PEMFCs: The interaction of Nafion (R) ionomer content and cathode relative humidity

机译:PEMFC的最佳膜/离聚物水含量的数值分析:Nafion(R)离聚物含量与阴极相对湿度的相互作用

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

A two dimensional, across the channel, isothermal, two-phase flow model for proton exchange membrane fuel cells (PEMFCs) is developed to investigate the interaction of dry Nafion (R) ionomer volume fraction (L-M(dry)) and cathode relative humidity (RHc) in PEMFCs. The agglomerate model is used to describe the catalyst layers properties, in which the agglomerate is covered by ionomer and liquid water films. The optimum ionomer water content is suggested by maximising the oxygen diffusion rate through the ionomer film. The effects of L-M(dry) and RHc on membrane and ionomer swelling and the cell performance are studied. The predicted current densities at fixed cell voltages are analysed by the Kriging surrogate model and used to optimise the L-M(dry) and RHc based on analysing their interaction. The simulation results show that the optimum ionomer water content increases as the ionomer content increases. At higher current densities, e.g. 1.0 A cm(-2), the best cell performance is achieved with L-M(dry) of 10%, corresponding to 0.3 mg cm(-2), with fully humidified inlet gases. The optimum RHc is between 60% and 80% for L-M(dry) of 40%. The modelling results also show that at higher current densities, the optimum RHc initially decreases then increases as L-M(dry) increases. The optimum RHc decreases from 76% to 73% as L-M(dry) increases from 10% to 30% then it increases up to 85% as L-M(dry) increases to 50%. (C) 2014 Elsevier Ltd. All rights reserved.
机译:建立了质子交换膜燃料电池(PEMFC)的跨通道二维等温两相流模型,以研究干Nafion(R)离聚物体积分数(LM(dry))和阴极相对湿度( PEMFC中的RHc)。附聚物模型用于描述催化剂层的性能,其中附聚物被离聚物和液态水膜覆盖。通过使氧在整个离聚物薄膜中的扩散速率最大化,可以建议最佳离聚物水含量。研究了L-M(干)和RHc对膜和离聚物溶胀以及细胞性能的影响。通过Kriging替代模型分析固定电池电压下的预测电流密度,并基于对L-M(dry)和RHc的相互作用进行分析,以优化L-M(dry)和RHc。仿真结果表明,最佳离聚物水含量随离聚物含量的增加而增加。在更高的电流密度下1.0 A cm(-2),使用10%的L-M(干),相当于0.3 mg cm(-2),并具有完全湿润的进气,可获得最佳的电池性能。对于40%的L-M(干燥),最佳RHc在60%至80%之间。建模结果还表明,在较高的电流密度下,最佳RHc最初会下降,然后随着L-M(干)的增加而增加。当L-M(干)从10%增加到30%时,最佳RHc从76%降低到73%,然后当L-M(干)增加到50%时,最佳RHc增加到85%。 (C)2014 Elsevier Ltd.保留所有权利。

著录项

  • 来源
    《Applied Energy》 |2015年第15期|242-257|共16页
  • 作者单位

    Newcastle Univ, Sch Chem Engn & Adv Mat, Newcastle Upon Tyne NE1 7RU, Tyne & Wear, England|Inner Mongolia Univ Technol, Sch Chem Engn, Hohhot 010051, Peoples R China;

    Newcastle Univ, Sch Mech & Syst Engn, Newcastle Upon Tyne NE1 7RU, Tyne & Wear, England;

    Dalian Univ Technol, Sch Mech Engn, Dalian 116024, Liaoning, Peoples R China;

    Newcastle Univ, Sch Chem Engn & Adv Mat, Newcastle Upon Tyne NE1 7RU, Tyne & Wear, England;

    Newcastle Univ, Sch Chem Engn & Adv Mat, Newcastle Upon Tyne NE1 7RU, Tyne & Wear, England;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Proton exchange membrane fuel cell; Swelling; Ionomer content; Relative humidity; Interaction; Mathematical model;

    机译:质子交换膜燃料电池;溶胀;离聚物含量;相对湿度;相互作用;数学模型;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号