...
首页> 外文期刊>Applied Energy >Environmental and energy system analysis of bio-methane production pathways: A comparison between feedstocks and process optimizations
【24h】

Environmental and energy system analysis of bio-methane production pathways: A comparison between feedstocks and process optimizations

机译:生物甲烷生产途径的环境和能源系统分析:原料与工艺优化之间的比较

获取原文
获取原文并翻译 | 示例
           

摘要

The energy efficiency and sustainability of an anaerobic green gas production pathway was evaluated, taking into account five biomass feedstocks, optimization of the green gas production pathway, replacement of current waste management pathways by mitigation, and transport of the feedstocks. Sustainability is expressed by three main factors: efficiency in (Process) Energy Returned On Invested (P)EROI, carbon footprint in Global Warming Potential GWP(100), and environmental impact in EcoPoints. The green gas production pathway operates on a mass fraction of 50% feedstock with 50% manure. The sustainability of the analyzed feedstocks differs substantially, favoring biomass waste flows over, the specially cultivated energy crop, maize. The use of optimization, in the shape of internal energy production, green gas powered trucks, and mitigation can significantly improve the sustainability for all feedstocks, but favors waste materials. Results indicate a possible improvement from an average (P) EROI for all feedstocks of 2.3 up to an average of 7.0 GJ/GJ The carbon footprint can potentially be reduced from an average of 40 down to 18 kgCO(2)eq/GJ. The environmental impact can potentially be reduced from an average of 5.6 down to 1.8 Pt/GJ. Internal energy production proved to be the most effective optimization. However, the use of optimization aforementioned will result in les green gas injected into the gas grid as it is partially consumed internally. Overall, the feedstock straw was the most energy efficient, where the feedstock harvest remains proved to be the most environmentally sustainable. Furthermore, transport distances of all feedstocks should not exceed 150 km or emissions and environmental impacts will surpass those of natural gas, used as a reference. Using green gas as a fuel can increase the acceptable transportation range to over 300 km. Within the context aforementioned and from an energy efficiency and sustainable point of view, the anaerobic digestion process should be utilized for processing locally available waste feedstocks with the added advantage of producing energy, which should first be used internally for powering the green gas production process. (C) 2015 Elsevier Ltd. All rights reserved.
机译:评估了厌氧绿色气体生产途径的能源效率和可持续性,其中考虑了五种生物质原料,绿色气体生产途径的优化,通过缓解措施替代当前废物管理途径以及原料的运输。可持续性由三个主要因素表示:投资的过程能源效率(P)EROI,全球变暖潜力GWP(100)中的碳足迹以及EcoPoints中的环境影响。绿气生产路径以50%原料和50%肥料的质量分数运行。被分析的原料的可持续性有很大的不同,有利于生物质废物流过特别种植的能源作物玉米。在内部能源生产,使用绿色气体的卡车和缓解措施等方面进行优化可以显着提高所有原料的可持续性,但有利于废料。结果表明,所有原料的平均(P)EROI可能从2.3提高到平均7.0 GJ / GJ。碳足迹可能从平均40降低到18 kgCO(2)eq / GJ。对环境的影响可以从平均5.6降低至1.8 Pt / GJ。内部能源生产被证明是最有效的优化方法。但是,使用上述优化将导致绿色气体被部分注入内部气体,从而被注入到气体网格中。总体而言,原料秸秆是最节能的,原料收割仍被证明是最环保的。此外,所有原料的运输距离不应超过150公里,否则排放和环境影响将超过天然气,这将作为参考。使用绿色气体作为燃料可以使可接受的运输距离增加到300公里以上。在上述背景下,从能源效率和可持续性的角度出发,厌氧消化工艺应被用于处理当地可利用的废物原料,并具有产生能源的额外优势,这种优势首先应在内部用于为绿色气体生产工艺提供动力。 (C)2015 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号