...
首页> 外文期刊>Applied Mathematical Modelling >Evaluation of thermal comfort conditions in a classroom equipped with radiant cooling systems and subjected to uniform convective environment
【24h】

Evaluation of thermal comfort conditions in a classroom equipped with radiant cooling systems and subjected to uniform convective environment

机译:在配备辐射冷却系统并处于均匀对流环境的教室中评估热舒适条件

获取原文
获取原文并翻译 | 示例
           

摘要

The aim of this work is to evaluate numerically the human thermal response that 24 students and 1 teacher feel in a classroom equipped with radiant cooling systems and subjected to uniform convective environments, in lightly warm conditions. The evolution of thermal comfort conditions, using the PMV index, is made by the multi-nodal human thermal comfort model. In this numerical model, that works in transient or steady-state conditions and simulates simultaneously a group of persons, the three-dimensional body is divided in 24 cylindrical and 1 spherical elements. Each element is divided in four parts (core, muscle, fat and skin), sub-divided in several layers, and protected by several clothing layers. This numerical model is divided in six parts: human body thermal system, clothing thermal system, integral equations resolution system, thermoregulatory system, heat exchange between the body and the environment and thermal comfort evaluation. Seven different radiant systems are combined to three convective environments. In the radiant systems (1) no radiant system without warmed curtain, (2) no radiant system with warmed curtain, (3) radiant floors cooling system with warmed curtain, (4) radiant panels cooling system with warmed curtain, (5) radiant ceiling cooling system with warmed curtain, (6) radiant floor and panels cooling system with warmed curtain and (7) radiant ceiling and panels cooling system with warmed curtain are analysed, while in the convective environments (1) without air velocity field and with uniform air velocity field of (2) 0.2 m/s and (3) 0.6 m/s are also analysed. The internal air temperature and internal surfaces temperature are 28 °C, the radiant cooling surfaces temperature are 19 °C and the warmed internal curtains surfaces temperatures, subjected to direct solar radiation, are 40 °C. The numerical model calculates the Mean Radiant Temperature field, the human bodies' temperatures field and the thermal comfort level, for the 25 occupants, for the 21 analysed situations. Without uniform air velocity field, when only one individual radiant cooling system is used, the Predicted Percentage of Dissatisfied people is lowest when the radiant floor cooling system is applied and is highest when the radiant panel cooling system is applied. When are combined the radiant ceiling or the floor cooling systems with the radiant panel cooling system the Predicted Percentage of Dissatisfied people decreases. When the uniform air velocity increases the thermal comfort level, that the occupants are subjected, increases. When the radiant floor cooling system or the combination of radiant floor and panel cooling systems without uniform air velocity field is applied, the Category C is verified for some occupants. However, with a convective uniform air velocity field of 0.2 m/s the Category B is verified and with a convective uniform air velocity field of 0.6 m/s the Category A is verify for some occupants. In the last situation the Category C is verified, in general, for all occupants.
机译:这项工作的目的是从数字上评估在配备有辐射冷却系统并在轻微对流环境下受到均匀对流环境的教室中,24名学生和1名老师所感受到的人体热响应。利用PMV指数,通过多节点人体热舒适模型对热舒适条件进行了演变。在此数值模型中,它可以在瞬态或稳态条件下工作并同时模拟一组人,将三维物体分为24个圆柱和1个球形元素。每个元素分为四个部分(核心,肌肉,脂肪和皮肤),细分为几层,并由几层衣服保护。该数值模型分为六个部分:人体热系统,衣服热系统,积分方程解析系统,温度调节系统,身体与环境之间的热交换以及热舒适性评估。七个不同的辐射系统组合到三个对流环境中。在辐射系统中(1)没有加热窗帘的无辐射系统,(2)没有加热窗帘的辐射系统,(3)带加热窗帘的辐射地板冷却系统,(4)带加热窗帘的辐射板冷却系统,(5)辐射在对流环境中(1)在没有风速场且均匀的情况下,分析了带有暖幕的天花板冷却系统,(6)带有暖幕的辐射地板和面板冷却系统以及(7)带有暖幕的辐射天花板和面板冷却系统。还分析了(2)0.2 m / s和(3)0.6 m / s的空气速度场。内部空气温度和内部表面温度为28°C,辐射冷却表面温度为19°C,受太阳直射的温暖内部窗帘表面温度为40°C。数值模型计算了21个分析情况下25位乘员的平均辐射温度场,人体温度场和热舒适水平。如果没有均匀的风速场,则仅使用一个单独的辐射冷却系统时,使用辐射地板冷却系统时的不满意人群预测百分比最低,而当使用辐射面板冷却系统时,该百分比最高。当将辐射天花板或地板冷却系统与辐射面板冷却系统结合使用时,预计的不满意人口百分比会降低。当均匀空气速度增加时,乘员受到的热舒适度增加。当使用辐射地板冷却系统或辐射地板和面板冷却系统的组合而没有均匀的风速场时,将对某些乘员进行C类验证。然而,在对流均匀空气速度场为0.2 m / s的情况下,对B类进行了验证;在对流均匀空气速度场为0.6 m / s的情况下,对某些乘员进行了A类验证。在最后一种情况下,通常对所有乘员进行C类验证。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号