...
首页> 外文期刊>Applied Mathematical Modelling >Analysis of flow and thermal field in nanofluid using a single phase thermal dispersion model
【24h】

Analysis of flow and thermal field in nanofluid using a single phase thermal dispersion model

机译:使用单相热扩散模型分析纳米流体中的流场和热场

获取原文
获取原文并翻译 | 示例
           

摘要

Flow and thermal field in nanofluid is analyzed using single phase thermal dispersion model proposed by Xuan and Roetzel [Y. Xuan, W. Roetzel, Conceptions for heat transfer correlation of nanofluids, Int. J. Heat Mass Transfer 43 (2000) 3701-3707]. The non-dimensional form of the transport equations involving the thermal dispersion effect is solved numerically using semi-explicit finite volume solver in a collocated grid. Heat transfer augmentation for copper-water nanofluid is estimated in a thermally driven two-dimensional cavity. The thermo-physical properties of nanofluid are calculated involving contributions due to the base fluid and nanoparticles. The flow and heat transfer process in the cavity is analyzed using different thermo-physical models for the nanofluid available in literature. The influence of controlling parameters on convective recirculation and heat transfer augmentation induced in buoyancy driven cavity is estimated in detail. The controlling parameters considered for this study are Grashof number (10~3 < Gr < 10~5), solid volume fraction (0 < φ < 0.2) and empirical shape factor (0.5 < n < 6). Simulations carried out with various thermo-physical models of the nanofluid show significant influence on thermal boundary layer thickness when the model incorporates the contribution of nanoparticles in the density as well as viscosity of nanofluid. Simulations incorporating the thermal dispersion model show increment in local thermal conductivity at locations with maximum velocity. The suspended particles increase the surface area and the heat transfer capacity of the fluid. As solid volume fraction increases, the effect is more pronounced. The average Nus-selt number from the hot wall increases with the solid volume fraction. The boundary surface of nanoparticles and their chaotic movement greatly enhances the fluid heat conduction contribution. Considerable improvement in thermal conductivity is observed as a result of increase in the shape factor.
机译:使用Xuan和Roetzel提出的单相热扩散模型分析了纳米流体中的流场和热场[Y. Xuan,W。Roetzel,纳米流体传热相关性的概念,国际。 J.热质传递43(2000)3701-3707]。使用半显式有限体积求解器在并置网格中以数值方式求解涉及热扩散效应的输运方程的无量纲形式。铜-水纳米流体的传热增强是在热驱动二维腔中进行的。计算纳米流体的热物理性质,涉及由于基础流体和纳米颗粒的贡献。使用文献中可用的纳米流体的不同热物理模型分析腔体中的流动和传热过程。详细估算了控制参数对浮力驱动型腔中对流再循环和传热增加的影响。本研究考虑的控制参数为格拉斯霍夫数(10〜3 <Gr <10〜5),固体体积分数(0 <φ<0.2)和经验形状因数(0.5 <n <6)。使用纳米流体的各种热物理模型进行的仿真显示,当模型中包含纳米颗粒在纳米流体的密度和粘度中的贡献时,会对热边界层厚度产生重大影响。包含热扩散模型的仿真显示,在具有最大速度的位置处,局部热导率会增加。悬浮的颗粒增加了流体的表面积和传热能力。随着固体体积分数的增加,效果更加明显。来自热壁的平均Nus-selt数随固体体积分数而增加。纳米颗粒的边界表面及其混沌运动大大增强了流体的热传导贡献。由于形状系数的增加,可以观察到导热率的显着改善。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号